-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathindex.html
274 lines (248 loc) · 10.8 KB
/
index.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8">
<meta name="description"
content="Coarse-to-Fine Amodal Segmentation with Shape Prior.">
<meta name="keywords" content="Amoda Segmentation, Shape Prior">
<meta name="viewport" content="width=device-width, initial-scale=1">
<title>Coarse-to-Fine Amodal Segmentation with Shape Prior</title>
<!-- <script async src="https://www.googletagmanager.com/gtag/js?id=G-PYVRSFMDRL"></script>
<script>
window.dataLayer = window.dataLayer || [];
function gtag() {
dataLayer.push(arguments);
}
gtag('js', new Date());
gtag('config', 'G-PYVRSFMDRL');
</script> -->
<link href="https://fonts.googleapis.com/css?family=Google+Sans|Noto+Sans|Castoro"
rel="stylesheet">
<link rel="stylesheet" href="./static/css/bulma.min.css">
<link rel="stylesheet" href="./static/css/bulma-carousel.min.css">
<link rel="stylesheet" href="./static/css/bulma-slider.min.css">
<link rel="stylesheet" href="./static/css/fontawesome.all.min.css">
<link rel="stylesheet"
href="https://cdn.jsdelivr.net/gh/jpswalsh/academicons@1/css/academicons.min.css">
<link rel="stylesheet" href="./static/css/index.css">
<!-- <link rel="icon" href="./static/images/favicon.svg">-->
<script src="https://ajax.googleapis.com/ajax/libs/jquery/3.5.1/jquery.min.js"></script>
<script defer src="./static/js/fontawesome.all.min.js"></script>
<script src="./static/js/bulma-carousel.min.js"></script>
<script src="./static/js/bulma-slider.min.js"></script>
<script src="./static/js/index.js"></script>
</head>
<body>
<nav class="navbar" role="navigation" aria-label="main navigation">
<div class="navbar-brand">
<a role="button" class="navbar-burger" aria-label="menu" aria-expanded="false">
<span aria-hidden="true"></span>
<span aria-hidden="true"></span>
<span aria-hidden="true"></span>
</a>
</div>
<div class="navbar-menu">
<div class="navbar-start" style="flex-grow: 1; justify-content: center;">
<a class="navbar-item" href="https://jianxgao.github.io/">
<span class="icon">
<i class="fas fa-home"></i>
</span>
</a>
</div>
</div>
</nav>
<section class="hero">
<div class="hero-body">
<div class="container is-max-desktop">
<div class="columns is-centered">
<div class="column has-text-centered">
<h1 class="title is-1 publication-title">Coarse-to-Fine Amodal Segmentation with Shape Prior</h1>
<h2><font color="gray" size="5">ICCV 2023</font></h2>
<div class="is-size-5 publication-authors">
<span class="author-block">
<a href="https://jianxgao.github.io/">Jianxiong Gao</a><sup>1</sup>,
</span>
<span class="author-block">
<a href="https://naiq.github.io/">Xuelin Qian</a><sup>1,†</sup>,
</span>
<span class="author-block">
<a href="https://yikai-wang.github.io/">Yikai Wang</a><sup>1</sup>,
</span>
<span class="author-block">
<a href="http://tianjunxiao.com/">Tianjun Xiao</a><sup>2,†</sup>,
</span>
<span class="author-block">
<a href="https://hetong007.github.io/">Tong He</a><sup>2</sup>,
</span>
<span class="author-block">
<a href="https://scholar.google.com/citations?hl=zh-CN&user=k0KiE4wAAAAJ">Zheng Zhang</a><sup>2</sup>,
</span>
<span class="author-block">
<a href="http://yanweifu.github.io/">Yanwei Fu</a><sup>1</sup>
</span>
</div>
<div class="is-size-5 publication-authors">
<span class="author-block"><sup>1</sup>Fudan University, <sup>2</sup>Amazon Web Service</span>
</div>
<div class="column has-text-centered">
<div class="publication-links">
<!-- PDF Link. -->
<!-- <span class="link-block">-->
<!-- <a href="https://arxiv.org/abs/1908.01491"-->
<!-- class="external-link button is-normal is-rounded is-dark">-->
<!-- <span class="icon">-->
<!-- <i class="fas fa-file-pdf"></i>-->
<!-- </span>-->
<!-- <span>Paper</span>-->
<!-- </a>-->
<!-- </span>-->
<span class="link-block">
<a href="https://arxiv.org/abs/2308.16825"
class="external-link button is-normal is-rounded is-dark">
<span class="icon">
<i class="ai ai-arxiv"></i>
</span>
<span>arXiv</span>
</a>
</span>
<!-- Video Link. -->
<!-- <span class="link-block">-->
<!-- <a href="https://www.youtube.com/watch?v=MrKrnHhk8IA"-->
<!-- class="external-link button is-normal is-rounded is-dark">-->
<!-- <span class="icon">-->
<!-- <i class="fab fa-youtube"></i>-->
<!-- </span>-->
<!-- <span>Video</span>-->
<!-- </a>-->
<!-- </span> -->
<!-- Code Link. -->
<span class="link-block">
<a href="https://github.com/amazon-science/c2f-seg"
class="external-link button is-normal is-rounded is-dark">
<span class="icon">
<i class="fab fa-github"></i>
</span>
<span>Code</span>
</a>
</span>
<!-- Dataset Link. -->
<span class="link-block">
<a href="https://data.dgl.ai/dataset/C2F-Seg/MOViD_A.tar"
class="external-link button is-normal is-rounded is-dark">
<span class="icon">
<i class="fas fa-database"></i>
</span>
<span>Data</span>
</a>
</span>
</div>
</div>
</div>
</div>
</div>
</div>
</section>
<section class="hero teaser">
<div class="container is-max-desktop">
<div class="hero-body">
<center>
<img src="./imgs/C2F-Seg_arch.jpg" width="100%"/>
</center>
<p>
The overview of our C2F-Seg. C2F-Seg first generates a coarse mask from the visible mask and visual features via the mask-and-predict procedure with transformers. Then this coarse amodal mask is refined with a convolutional module guided by human-imitated attention on visual features of the amodal object.
The learning of visible mask is used as an auxiliary task in training, while in inference we only provide an estimation of amodal mask.
</p>
</div>
</div>
</section>
<section class="hero teaser">
<div class="container is-max-desktop">
<div class="hero-body">
<center>
<img src="./imgs/kins4.png" width="90%"/>
<img src="./imgs/kins5.png" width="90%"/>
</center>
</div>
</div>
</section>
<section class="hero teaser">
<div class="container is-max-desktop">
<div class="hero-body">
<center>
<h2 class="title is-3">MOViD-Amodal</h2>
<img src="./imgs/example.gif" width="90%"/>
</center>
</div>
</div>
</section>
<section class="section">
<div class="container is-max-desktop">
<!-- Abstract. -->
<div class="columns is-centered has-text-centered">
<div class="column is-four-fifths">
<h2 class="title is-3">Abstract</h2>
<div class="content has-text-justified">
<p>
Amodal object segmentation is a challenging task that involves segmenting both visible and occluded parts of an object.
In this paper, we propose a novel approach, called Coarse-to-Fine Segmentation (C2F-Seg), that addresses this problem by progressively modeling the amodal segmentation.
C2F-Seg initially reduces the learning space from the pixel-level image space to the vector-quantized latent space.
This enables us to better handle long-range dependencies and learn a coarse-grained amodal segment from visual features and visible segments.
However, this latent space lacks detailed information about the object, which makes it difficult to provide a precise segmentation directly.
To address this issue, we propose a convolution refine module to inject fine-grained information and provide a more precise amodal object segmentation based on visual features and coarse-predicted segmentation.
To help the studies of amodal object segmentation, we create a synthetic amodal dataset, named as MOViD-Amodal (MOViD-A), which can be used for both image and video amodal object segmentation.
We extensively evaluate our model on two benchmark datasets: KINS and COCO-A. Our empirical results demonstrate the superiority of C2F-Seg.
Moreover, we exhibit the potential of our approach for video amodal object segmentation tasks on FISHBOWL and our proposed MOViD-A.
</p>
</div>
</div>
</div>
<!--/ Abstract. -->
</div>
</section>
<section class="section" id="BibTeX">
<div class="container is-max-desktop content">
<h2 class="title">BibTeX</h2>
<pre><code>
@inproceedings{gao2023coarse,
title={Coarse-to-Fine Amodal Segmentation with Shape Prior},
author={Gao, Jianxiong and Qian, Xuelin and Wang, Yikai and Xiao, Tianjun and He, Tong and Zhang, Zheng and Fu, Yanwei},
booktitle={Proceedings of the IEEE/CVF International Conference on Computer Vision},
pages={1262--1271},
year={2023}
}
</code></pre>
</div>
</section>
<footer class="footer">
<div class="container">
<div class="content has-text-centered">
<a class="icon-link"
href="https://arxiv.org/abs/2308.16825">
<i class="fas fa-file-pdf"></i>
</a>
<a class="icon-link" href="https://github.com/amazon-science/c2f-seg" class="external-link" disabled>
<i class="fab fa-github"></i>
</a>
</div>
<div class="columns is-centered">
<div class="column is-8">
<div class="content">
<p>
This website is licensed under a <a rel="license"
href="http://creativecommons.org/licenses/by-sa/4.0/">Creative
Commons Attribution-ShareAlike 4.0 International License</a>.
</p>
<p>
This means you are free to borrow the <a
href="https://github.com/nerfies/nerfies.github.io">source code</a> of this website,
we just ask that you link back to this page in the footer.
Please remember to remove the analytics code included in the header of the website which
you do not want on your website.
</p>
</div>
</div>
</div>
</div>
</footer>
</body>
</html>