-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathCNN_MNIST_pytorch.py
136 lines (119 loc) · 4.67 KB
/
CNN_MNIST_pytorch.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
from __future__ import print_function
import argparse
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torchvision import datasets, transforms
from torch.autograd import Variable
# Training settings
parser = argparse.ArgumentParser(description='PyTorch MNIST Example')
parser.add_argument('--batch-size', type=int, default=128, metavar='N',
help='input batch size for training (default: 128)')
parser.add_argument('--epochs', type=int, default=20, metavar='N',
help='number of epochs to train (default: 164)')
parser.add_argument('--lr', type=float, default=0.1, metavar='LR',
help='learning rate (default: 0.1)')
parser.add_argument('--momentum', type=float, default=0.9, metavar='M',
help='SGD momentum (default: 0.9)')
parser.add_argument('--no-cuda', action='store_true', default=False,
help='disables CUDA training')
parser.add_argument('--seed', type=int, default=1, metavar='S',
help='random seed (default: 1)')
args = parser.parse_args()
args.cuda = not args.no_cuda and torch.cuda.is_available()
torch.manual_seed(args.seed)
if args.cuda:
torch.cuda.manual_seed(args.seed)
# Dataloader
train_loader = torch.utils.data.DataLoader(
datasets.MNIST('./MNIST_data', train=True, download=True,
transform=transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))
])),
batch_size=args.batch_size, shuffle=True,num_workers = 2)
test_loader = torch.utils.data.DataLoader(
datasets.MNIST('./MNIST_data', train=False, transform=transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))
])),
batch_size=args.batch_size, shuffle=True,num_workers = 2)
#Define Network, we implement LeNet here
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(1, 6, kernel_size=(5,5),stride=1, padding=0)
self.conv2 = nn.Conv2d(6, 16, kernel_size=(5,5),stride=1, padding=0)
self.fc1 = nn.Linear(16*4*4, 120)
self.fc2 = nn.Linear(120, 84)
self.fc3 = nn.Linear(84, 10)
def forward(self, x):
out = F.relu(self.conv1(x))
out = F.max_pool2d(out, 2)
out = F.relu(self.conv2(out))
out = F.max_pool2d(out, 2)
out = out.view(out.size(0), -1) #flatten
out = F.relu(self.fc1(out))
out = F.relu(self.fc2(out))
out = self.fc3(out)
return out
model = Net()
if args.cuda:
device = torch.device('cuda')
model.to(device)
#define optimizer/loss function
Loss = nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr=args.lr, momentum=args.momentum)
#learning rate scheduling
def adjust_learning_rate(optimizer, epoch):
if epoch < 10:
lr = 0.01
elif epoch < 15:
lr = 0.001
else:
lr = 0.0001
for param_group in optimizer.param_groups:
param_group['lr'] = lr
#training function
def train(epoch):
model.train()
adjust_learning_rate(optimizer, epoch)
for batch_idx, (data, target) in enumerate(train_loader):
if args.cuda:
data, target = data.to(device), target.to(device)
optimizer.zero_grad()
output = model(data)
loss = Loss(output, target)
loss.backward()
optimizer.step()
print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
epoch, batch_idx * len(data), len(train_loader.dataset),
100. * batch_idx / len(train_loader), loss.data[0]))
#Testing function
def test(epoch):
model.eval()
test_loss = 0
correct = 0
for batch_idx, (data, target) in enumerate(test_loader):
if args.cuda:
data, target = data.to(device), target.to(device)
with torch.no_grad():
output = model(data)
test_loss += Loss(output, target).data[0]
pred = output.data.max(1)[1] # get the index of the max log-probability
correct += pred.eq(target.data).cpu().sum()
test_loss = test_loss
test_loss /= len(test_loader) # loss function already averages over batch size
print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(
test_loss, correct, len(test_loader.dataset),
100. * correct / len(test_loader.dataset)))
#run and save model
for epoch in range(1, args.epochs + 1):
train(epoch)
test(epoch)
savefilename = 'LeNet_'+str(epoch)+'.tar'
torch.save({
'epoch': epoch,
'state_dict': model.state_dict(),
}, savefilename)