-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathda_serial.py
90 lines (76 loc) · 2.8 KB
/
da_serial.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
# Summary
# Basic use of distributed arrays communication data structures in PETSc.
#
# Examples
# Direct solve:
# $ python da_serial.py -ksp_monitor -ksp_type preonly -pc_type lu
#
# Iterative solve:
# $ python da_serial.py -ksp_monitor -ksp_type bcgs
#
# Description
# DAs are extremely useful when working simulations that are discretized
# on a structured grid. DAs don't actually hold data; instead, they are
# templates for distributing and communicating information (matrices and
# vectors) across a parallel system.
#
# In this example, we set up a simple 2D wave equation with mirror
# boundary conditions. The solution, given a source at the center of the
# grid, is solved using a ksp object.
#
# Note that this example is uniprocessor only, so there is nothing
# "distributed" about the DA. Use this as a stepping stone to working with
# DAs in a parallel setting.
#
# For more information, consult the PETSc user manual.
# Also, look at the petsc4py/src/PETSc/DA.pyx file.
import petsc4py
import sys
petsc4py.init(sys.argv)
from petsc4py import PETSc
from matplotlib import pylab
# Dimensions of the 2D grid.
nx = 101
ny = 101
w = 2./10. # Angular frequency of wave (2*pi / period).
# Create the DA.
da = PETSc.DA().create([nx, ny], \
stencil_width=1, \
boundary_type=('ghosted', 'ghosted'))
# Create the rhs vector based on the DA.
b = da.createGlobalVec()
b_val = da.getVecArray(b) # Obtain access to elements of b.
b_val[50, 50] = 1; # Set central value to 1.
# Create (a vector to store) the solution vector.
x = da.createGlobalVec()
# Create the matrix.
A = da.getMatrix('aij')
# Stencil objects make it easy to set the values of the matrix elements.
row = PETSc.Mat.Stencil()
col = PETSc.Mat.Stencil()
# Set matrix elements to correct values.
(i0, i1), (j0, j1) = da.getRanges()
for j in range(j0, j1):
for i in range(i0, i1):
row.index = (i, j)
for index, value in [((i, j), -4 + w**2),
((i-1, j), 1),
((i+1, j), 1),
((i, j-1), 1),
((i, j+1), 1)]:
col.index = index
A.setValueStencil(row, col, value) # Sets a single matrix element.
A.assemblyBegin() # Make matrices useable.
A.assemblyEnd()
# Initialize ksp solver.
ksp = PETSc.KSP().create()
ksp.setOperators(A)
# Allow for solver choice to be set from command line with -ksp_type <solver>.
# Recommended option: -ksp_type preonly -pc_type lu
ksp.setFromOptions()
print 'Solving with:', ksp.getType()
# Solve!
ksp.solve(b, x)
# Plot solution, which is wave-like, although boundaries cause reflections.
pylab.contourf(da.getVecArray(x)[:])
pylab.show()