-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathimage_retrieval_test.py
332 lines (296 loc) · 13.9 KB
/
image_retrieval_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
import os
import cv2
import time
import threading
from datetime import timedelta
from retrieval.create_thumb_images import create_thumb_images
from flask import Flask, render_template, request, redirect, url_for, make_response, jsonify, flash
from retrieval.retrieval_VGG16 import load_model, load_data, extract_feature, load_query_image, sort_img, extract_feature_query
from image_encrypt import *
from AES import *
import numpy as np
import torch
import pymysql
import shutil
import argparse
from io import BytesIO
from PIL import Image
import sys
from matplotlib import pyplot as plt
def dynamic_modification_timer(mutex):
time.sleep(3600)
mutex.acquire()
flag = False
global gallery_feature
global image_paths
'''
增加
直接读取并加入到特征集中;
并将图片加密写入数据库
'''
base_path = './static/image_database/'
data_loader = load_data(data_path='./static/update_images/',
batch_size=1,
shuffle=False,
transform='default',
)
# Prepare model. 加载预训练的model
# #可删除部分
# model = load_model(pretrained_model='./retrieval/models/net_best.pth', use_gpu=True)
# print("Model load successfully!")
# gallery_feature = np.load('./retrieval/models/gallery_feature.npy') #ndarray
# image_paths = np.load('./retrieval/models/image_paths.npy')
# gallery_feature = torch.from_numpy(gallery_feature)
# image_paths = image_paths.tolist()
# #到这
increase_feature, increase_image_paths = extract_feature(model=model,
dataloaders=data_loader) # torch.Size([59, 2048]) # tensor list
# 加密并加入数据库
if len(increase_image_paths) != 0:
flag = True
print('添加成功')
conn = dbinfo()
conncur = conn.cursor()
try:
for i in range(0, len(increase_image_paths)):
path = increase_image_paths[i]
entend_path = path[path.rfind('/') + 1:]
fp = open(path, 'rb')
base64_data = mybase64.encode(fp.read())
fp.close()
try:
sql_insertimage = "replace into image_base64 (file_name,image_value) VALUE (%s, %s) "
conncur.execute(sql_insertimage, (entend_path, base64_data))
seatdic = conncur.fetchall()
conn.commit()
conn.close()
except pymysql.Error as e:
print("Error %d %s" % (e.args[0], e.args[1]))
sys.exit(1)
new_path = base_path + entend_path
shutil.copyfile(path, new_path)
os.remove(path)
increase_image_paths[i] = new_path
except IOError as e:
print("Error %d %s" % (e.args[0], e.args[1]))
sys.exit(1)
gallery_feature = torch.cat((gallery_feature, increase_feature), 0)
image_paths.extend(increase_image_paths)
# print(gallery_feature)
# print(image_paths)
# np.save('./retrieval/models/gallery_feature.npy', gallery_feature.numpy())
# np.save('./retrieval/models/image_paths.npy', np.array(image_paths))
'''
删除
在数据库中删除,然后用它的文件名在image_path中查找得到下标,删除向量即可;
'''
data_loader = load_data(data_path='./static/delete_images/',
batch_size=1,
shuffle=False,
transform='default',
)
# Prepare model. 加载预训练的model
# #可删除部分
# model = load_model(pretrained_model='./retrieval/models/net_best.pth', use_gpu=True)
# print("Model load successfully!")
# gallery_feature = np.load('./retrieval/models/gallery_feature.npy') #ndarray
# image_paths = np.load('./retrieval/models/image_paths.npy')
# gallery_feature = torch.from_numpy(gallery_feature)
# image_paths = image_paths.tolist()
# #到这
delete_feature, delete_image_paths = extract_feature(model=model,
dataloaders=data_loader) # torch.Size([59, 2048]) # tensor list
if len(delete_image_paths) != 0:
print('删除成功')
conn = dbinfo()
conncur = conn.cursor()
del_sql = 'delete from image_base64 where file_name = %s'
flag = True
for i in range(0, len(delete_image_paths)):
path = delete_image_paths[i]
os.remove(path)
delete_image_paths[i] = path[path.rfind('/') + 1:]
# 删除数据库数据
try:
conncur.executemany(del_sql, delete_image_paths)
conn.commit()
except:
conn.rollback()
conn.close()
del_list = []
for i in range(0, len(image_paths)):
path = image_paths[i]
extend_path = path[path.rfind('/') + 1:]
if extend_path in delete_image_paths:
del_list.append(i)
os.remove(path)
gallery_feature = gallery_feature.numpy()
gallery_feature = np.delete(gallery_feature, del_list, axis=0)
image_paths = np.delete(image_paths, del_list)
gallery_feature = torch.from_numpy(gallery_feature)
image_paths = image_paths.tolist()
if flag == True:
np.save('./retrieval/models/gallery_feature.npy', gallery_feature.numpy())
np.save('./retrieval/models/image_paths.npy', np.array(image_paths))
else:
print('未修改')
mutex.release()
global thread
# 重复构造定时器
thread = threading.Thread(target=dynamic_modification_timer, args=(mutex, ))
thread.start()
#parsing instrutions
parser = argparse.ArgumentParser(description='Image Retrieval')
parser.add_argument('--update', action='store_true', default=False, help='update database')
args = parser.parse_args()
if args.update:
# Create thumb images. 创建缩略图
create_thumb_images(full_folder='./static/image_database/',
thumb_folder='./static/thumb_images/',
suffix='',
height=200,
del_former_thumb=True,
)
# Prepare data set.
data_loader = load_data(data_path='./static/image_database/',
batch_size=1,
shuffle=False,
transform='default',
)
# Prepare model. 加载预训练的model
model = load_model(pretrained_model=os.path.join('./DealNet/checkpoint', 'VGG16', 'VGG16_300epoch.t7'), use_gpu=True)
print("Model load successfully!")
# Extract database features.
# 在数据库图片不改变的情况下 选择是否保存特征向量 以节约时间
if args.update:
# Extract database features.
gallery_feature, image_paths = extract_feature(model=model, dataloaders=data_loader) # torch.Size([59, 2048])
np.save('./retrieval/models/gallery_feature.npy', gallery_feature.numpy())
np.save('./retrieval/models/image_paths.npy', np.array(image_paths))
else:
gallery_feature = np.load('./retrieval/models/gallery_feature.npy')
gallery_feature = torch.from_numpy(gallery_feature)
print(gallery_feature)
image_paths = np.load('./retrieval/models/image_paths.npy')
image_paths = image_paths.tolist()
print("extract_feature successfully!")
# mybase64 = MyBase64()
# s = "vwxrstuopq34567ABCDEFGHIJyz012PQRSTKLMNOZabcdUVWXYefghijklmn89+/"
# mybase64.__init__(s)
key = '1234567890123456'
aes = AesEncryption(key)# 声明加密算法对象
#先写入数据库
local_dir = './static/image_database/'
try:
conn = dbinfo()
conncur = conn.cursor()
for root,dirs,files in os.walk(local_dir):
for file_name in files:
image_path = os.path.join(local_dir,file_name)
#imagename,_ = os.path.splitext(filepath)
# print(file_name)
fp = open(image_path,'rb')
AES_data = aes.encrypt(fp.read())
fp.close()
try:
sql_insertimage="replace into image_AES (file_name,image_value) values (%s, %s) "
conncur.execute(sql_insertimage, (file_name, AES_data))
seatdic= conncur.fetchall()
conn.commit()
except pymysql.Error as e :
print("Error %d %s" % (e.args[0],e.args[1]))
sys.exit(1)
conn.close()
except IOError as e:
print("Error %d %s" % (e.args[0],e.args[1]))
sys.exit(1)
print('wrote database successfully')
#定时调度
mutex = threading.Lock()
thread = threading.Thread(target=dynamic_modification_timer, args=(mutex, ))
thread.start()
# Picture extension supported.
ALLOWED_EXTENSIONS = set(['png', 'jpg', 'JPG', 'PNG', 'bmp', 'jpeg', 'JPEG'])
def allowed_file(filename):
return '.' in filename and filename.rsplit('.', 1)[1] in ALLOWED_EXTENSIONS
app = Flask(__name__)
# Set static file cache expiration time
# app.send_file_max_age_default = timedelta(seconds=1)
app.config['SEND_FILE_MAX_AGE_DEFAULT'] = timedelta(seconds=1)
@app.route('/', methods=['POST', 'GET']) # add route
def image_retrieval():
basepath = os.path.dirname(__file__) # current path
upload_path = os.path.join(basepath, 'static/upload_image', 'query.jpg')
if request.method == 'POST':
if request.form['submit'] == 'upload':
if len(request.files) == 0:
return render_template('upload_finish.html', message='Please select a picture file!',
img_query='./static/upload_image/query.jpg?123456')
else:
f = request.files['picture']
if not (f and allowed_file(f.filename)):
# return jsonify({"error": 1001, "msg": "Examine picture extension, only png, PNG, jpg, JPG, or bmp supported."})
return render_template('upload_finish.html',
message='Examine picture extension, png、PNG、jpg、JPG、bmp support.',
img_query='./static/upload_image/query.jpg')
else:
f.save(upload_path)
# transform image format and name with opencv.
# img = cv2.imread(upload_path) # 从原来的读取img
# cv2.imwrite(os.path.join(basepath, 'static/upload_image', 'query.jpg'), img) # 保存到 当前目录下
return render_template('upload_finish.html', message='Upload successfully!',
img_query='./static/upload_image/query.jpg?123456') # 点了upload之后的成功界面
elif request.form['submit'] == 'retrieval':
start_time = time.time()
# Query.
query_image = load_query_image('./static/upload_image/query.jpg')
# Extract query features.
query_feature = extract_feature_query(model=model, img=query_image) # [1,2048]
similarity, index = sort_img(query_feature, gallery_feature)
sorted_paths = [image_paths[i] for i in index]
# plt.figure(figsize=(10, 20)) # figsize 用来设置图片大小
# plt.subplot(432), plt.imshow(plt.imread('./static/upload_image/query.jpg')), plt.title('target_image')
# for i in range(9):
# plt.subplot(4, 3, i + 4), plt.imshow(plt.imread(sorted_paths[i]))
# plt.show()
#数据库查询之后,将查询到的图片解密存入特定文件夹,只取前9
save_path = './static/temporary_file/'
try:
conn = dbinfo()
conncur = conn.cursor()
tmb_images = []
for i in range(0, 10):
file_name = os.path.split(sorted_paths[i])[1]
print(file_name)
sql_image = "select image_value from image_AES where file_name = %s"
conncur.execute(sql_image, (file_name,))
feed_back = conncur.fetchall()
img_value = feed_back[0]['image_value']
img_value.encode('utf-8').decode('gbk')
# decode()
byte_data = aes.decrypt(img_value)
image_data = BytesIO(byte_data)
img = Image.open(image_data)
tmb_images.append(save_path + file_name)
img.save(save_path+file_name)
conn.commit()
conn.close()
except pymysql.Error as e:
print(e)
sys.exit(1)
# print(sorted_paths) # 打印出查找之后根据相似度进行排序后的图片路径
# tmb_images = ['./static/temporary_file/' + os.path.split(sorted_path)[1] for sorted_path in sorted_paths]
# sorted_files = [os.path.split(sorted_path)[1] for sorted_path in sorted_paths]
return render_template('retrieval.html',
message="Retrieval finished, cost {:3f} seconds.".format(time.time() - start_time),
sml1=similarity[0], sml2=similarity[1], sml3=similarity[2], sml4=similarity[3],
sml5=similarity[4], sml6=similarity[5], sml7=similarity[6], sml8=similarity[7],
sml9=similarity[8],
img1_tmb=tmb_images[0], img2_tmb=tmb_images[1], img3_tmb=tmb_images[2],
img4_tmb=tmb_images[3], img5_tmb=tmb_images[4], img6_tmb=tmb_images[5],
img7_tmb=tmb_images[6], img8_tmb=tmb_images[7], img9_tmb=tmb_images[8],
img_query='./static/upload_image/query.jpg?123456')
return render_template('upload.html')
if __name__ == '__main__':
# app.debug = True
app.run(host='127.0.0.1', port=8080, debug=True, use_reloader=False)