NeatText:a simple NLP package for cleaning textual data and text preprocessing. Simplifying Text Cleaning For NLP & ML
- Cleaning of unstructured text data
- Reduce noise [special characters,stopwords]
- Reducing repetition of using the same code for text preprocessing
- convert the already known solution for cleaning text into a reuseable package
- Check out the full docs here
pip install neattext
- The OOP Way(Object Oriented Way)
- NeatText offers 5 main classes for working with text data
- TextFrame : a frame-like object for cleaning text
- TextCleaner: remove or replace specifics
- TextExtractor: extract unwanted text data
- TextMetrics: word stats and metrics
- TextPipeline: combine multiple functions in a pipeline
- Keeps the text as
TextFrame
object. This allows us to do more with our text. - It inherits the benefits of the TextCleaner and the TextMetrics out of the box with some additional features for handling text data.
- This is the simplest way for text preprocessing with this library alternatively you can utilize the other classes too.
>>> import neattext as nt
>> mytext = "This is the mail [email protected] ,our WEBSITE is https://example.com π."
>>> docx = nt.TextFrame(text=mytext)
>>> docx.text
"This is the mail [email protected] ,our WEBSITE is https://example.com π."
>>>
>>> docx.describe()
Key Value
Length : 73
vowels : 21
consonants: 34
stopwords: 4
punctuations: 8
special_char: 8
tokens(whitespace): 10
tokens(words): 14
>>>
>>> docx.length
73
>>> # Scan Percentage of Noise(Unclean data) in text
>>> d.noise_scan()
{'text_noise': 19.17808219178082, 'text_length': 73, 'noise_count': 14}
>>>
>>> docs.head(16)
'This is the mail'
>>> docx.tail()
>>> docx.count_vowels()
>>> docx.count_stopwords()
>>> docx.count_consonants()
>>> docx.nlongest()
>>> docx.nshortest()
>>> docx.readability()
>>> docx.word_tokens()
>>>
>>> docx.sent_tokens()
>>>
>>> docx.term_freq()
>>>
>>> docx.bow()
>>> docx.normalize()
'this is the mail [email protected] ,our website is https://example.com π.'
>>> docx.normalize(level='deep')
'this is the mail examplegmailcom our website is httpsexamplecom '
>>> docx.remove_puncts()
>>> docx.remove_stopwords()
>>> docx.remove_html_tags()
>>> docx.remove_special_characters()
>>> docx.remove_emojis()
>>> docx.fix_contractions()
>>> docx.remove_accents()
>>> docx.remove_non_ascii()
- Read txt file directly into TextFrame
>>> import neattext as nt
>>> docx_df = nt.read_txt('file.txt')
- Alternatively you can instantiate a TextFrame and read a text file into it
>>> import neattext as nt
>>> docx_df = nt.TextFrame().read_txt('file.txt')
>>> t1 = "This is the mail [email protected] ,our WEBSITE is https://example.com π and it will cost $100 to subscribe."
>>> docx = TextFrame(t1)
>>> result = docx.remove_emails().remove_urls().remove_emojis()
>>> print(result)
'This is the mail ,our WEBSITE is and it will cost $100 to subscribe.'
- Clean text by removing emails,numbers,stopwords,emojis,etc
- A simplified method for cleaning text by specifying as True/False what to clean from a text
>>> from neattext.functions import clean_text
>>>
>>> mytext = "This is the mail [email protected] ,our WEBSITE is https://example.com π."
>>>
>>> clean_text(mytext)
'mail [email protected] ,our website https://example.com .'
-
You can remove punctuations,stopwords,urls,emojis,multiple_whitespaces,etc by setting them to True.
-
You can choose to remove or not remove punctuations by setting to True/False respectively
>>> clean_text(mytext,puncts=True)
'mail example@gmailcom website https://examplecom '
>>>
>>> clean_text(mytext,puncts=False)
'mail [email protected] ,our website https://example.com .'
>>>
>>> clean_text(mytext,puncts=False,stopwords=False)
'this is the mail [email protected] ,our website is https://example.com .'
>>>
- You can also remove the other non-needed items accordingly
>>> clean_text(mytext,stopwords=False)
'this is the mail [email protected] ,our website is https://example.com .'
>>>
>>> clean_text(mytext,urls=False)
'mail [email protected] ,our website https://example.com .'
>>>
>>> clean_text(mytext,urls=True)
'mail [email protected] ,our website .'
>>>
- You remove the most common punctuations such as fullstop,comma,exclamation marks and question marks by setting most_common=True which is the default
- Alternatively you can also remove all known punctuations from a text.
>>> import neattext as nt
>>> mytext = "This is the mail [email protected] ,our WEBSITE is https://example.com π. Please don't forget the email when you enter !!!!!"
>>> docx = nt.TextFrame(mytext)
>>> docx.remove_puncts()
TextFrame(text="This is the mail example@gmailcom our WEBSITE is https://examplecom π Please dont forget the email when you enter ")
>>> docx.remove_puncts(most_common=False)
TextFrame(text="This is the mail examplegmailcom our WEBSITE is httpsexamplecom π Please dont forget the email when you enter ")
- You can remove stopwords from a text by specifying the language. The default language is English
- Supported Languages include English(en),Spanish(es),French(fr)|Russian(ru)|Yoruba(yo)|German(de)
>>> import neattext as nt
>>> mytext = "This is the mail [email protected] ,our WEBSITE is https://example.com π. Please don't forget the email when you enter !!!!!"
>>> docx = nt.TextFrame(mytext)
>>> docx.remove_stopwords(lang='en')
TextFrame(text="mail [email protected] ,our WEBSITE https://example.com π. forget email enter !!!!!")
>>> print(docx.remove_emails())
>>> 'This is the mail ,our WEBSITE is https://example.com π.'
>>>
>>> print(docx.remove_stopwords())
>>> 'This mail [email protected] ,our WEBSITE https://example.com π.'
>>>
>>> print(docx.remove_numbers())
>>> docx.remove_phone_numbers()
>>> docx.remove_btc_address()
>>> docx.remove_special_characters()
>>> print(docx.remove_emojis())
>>> 'This is the mail [email protected] ,our WEBSITE is https://example.com .'
- You can also specify your own custom pattern, incase you cannot find what you need in the functions using the
remove_custom_pattern()
function
>>> import neattext.functions as nfx
>>> ex = "Last !RT tweeter multiple ṡ"
>>>
>>> nfx.remove_custom_pattern(e,r'&#\d+')
'Last !RT tweeter multiple '
>>> docx.replace_emails()
>>> docx.replace_numbers()
>>> docx.replace_phone_numbers()
>>> t1 = "This is the mail [email protected] ,our WEBSITE is https://example.com π and it will cost $100 to subscribe."
>>> docx = TextCleaner(t1)
>>> result = docx.remove_emails().remove_urls().remove_emojis()
>>> print(result)
'This is the mail ,our WEBSITE is and it will cost $100 to subscribe.'
- To Extract emails,phone numbers,numbers,urls,emojis from text
>>> from neattext import TextExtractor
>>> docx = TextExtractor()
>>> docx.text = "This is the mail [email protected] ,our WEBSITE is https://example.com π."
>>> docx.extract_emails()
>>> ['[email protected]']
>>>
>>> docx.extract_emojis()
>>> ['π']
- To Find the Words Stats such as counts of vowels,consonants,stopwords,word-stats
>>> from neattext import TextMetrics
>>> docx = TextMetrics()
>>> docx.text = "This is the mail [email protected] ,our WEBSITE is https://example.com π."
>>> docx.count_vowels()
>>> docx.count_consonants()
>>> docx.count_stopwords()
>>> docx.word_stats()
>>> docx.memory_usage()
- The MOP(method/function oriented way) Way
>>> from neattext.functions import clean_text,extract_emails
>>> t1 = "This is the mail [email protected] ,our WEBSITE is https://example.com ."
>>> clean_text(t1,puncts=True,stopwords=True)
>>>'this mail examplegmailcom website httpsexamplecom'
>>> extract_emails(t1)
>>> ['[email protected]']
- Alternatively you can also use this approach
>>> import neattext.functions as nfx
>>> t1 = "This is the mail [email protected] ,our WEBSITE is https://example.com ."
>>> nfx.clean_text(t1,puncts=True,stopwords=True)
>>>'this mail examplegmailcom website httpsexamplecom'
>>> nfx.extract_emails(t1)
>>> ['[email protected]']
- Explain an emoji or unicode for emoji
- emoji_explainer()
- emojify()
- unicode_2_emoji()
>>> from neattext.explainer import emojify
>>> emojify('Smiley')
>>> 'π'
>>> from neattext.explainer import emoji_explainer
>>> emoji_explainer('π')
>>> 'SMILING FACE WITH OPEN MOUTH'
>>> from neattext.explainer import unicode_2_emoji
>>> unicode_2_emoji('0x1f49b')
'FLUSHED FACE'
- The Pipeline Way
>>> from neattext.pipeline import TextPipeline
>>> t1 = """This is the mail [email protected] ,our WEBSITE is https://example.com π. This is visa 4111 1111 1111 1111 and bitcoin 1BvBMSEYstWetqTFn5Au4m4GFg7xJaNVN2 with mastercard 5500 0000 0000 0004. Send it to PO Box 555, KNU"""
>>> p = TextPipeline(steps=[remove_emails,remove_numbers,remove_emojis])
>>> p.fit(t1)
'This is the mail ,our WEBSITE is https://example.com . This is visa and bitcoin BvBMSEYstWetqTFnAumGFgxJaNVN with mastercard . Send it to PO Box , KNU'
- Check For steps and named steps
>>> p.steps
>>> p.named_steps
- Alternatively you can also use this approach
Please read the documentation for more information on what neattext does and how to use is for your needs.You can also check out our readthedocs page here
- basic nlp task
- currency normalizer
- neattext-cli
- Inspired by packages like
clean-text
from Johannes Fillter andtextify
by JCharisTech
- Contributions Are Welcomed
- Notice a bug, please let us know.
- Thanks A lot
- Jesse E.Agbe(JCharis)
- Jesus Saves @JCharisTech