
ChatterBox
Jared Rathbun, Alexander Royer, and Camron Chrissis

What is ChatterBox?

ChatterBox is a group-chatting software, allowing multiple users to communicate
simultaneously in a confidential and secure fashion.

Users can create an account, reset their password, and login using a convenient
and modern Java Swing GUI (Graphical User Interface).

Each message is displayed in a neat fashion to every member of the group chat
with a timestamp and their username.

Requires 2-step authentication using HOTP (HMAC-Based One-Time-Password).

Our Security Protocol

We decided to implement the use of hybrid encryption.
Asymmetric Cryptography is used to transmit information such as
keys and Symmetric Cryptography is used for the transmission of
other information.

In order to do this, we used RSA in ECB (Electronic Code Book)
mode to serve as our Asymmetric Cipher, and AES with AEAD
(Authenticated Encryption with Additional Data) as our Symmetric
Cipher.

To implement our AES Cipher, we used GCM (Galois Counter
Mode), which allows us to verify the integrity of the message
without including something like a signature or MAC tag.

Client-Server Diffie-Hellman Key Exchange

When a user connects to the server, the client sends a message notifying the server
that it will be starting a Diffie-Hellman Key Exchange. An exchange of certificates is
then completed. Specifically, it will be using Elliptic-Curve keys in the process.

Using RSA and an encrypt-then-sign technique, the client would send it’s public
Elliptic-Curve key to the server and wait for the server’s public Elliptic-Curve key.
Once completed, both parties can compute the shared key and create an AES key
from the keying material.

Graphically, this would look like:

Sampling a One-Time Password

When the client attempts to create an account,
reset their password, or login the user will be
prompted to enter an email address and is then
prompted for an OTP.

Depending on if they have an account or not, the
message to the server will include an email
address and password, or just an email address.

Enrolling a User into the Database
The client will send “ENROLL” to the server along with an email
address, username, password, and a nonce.

If the server detects valid credentials from the database, the user
will receive “SUCCESS” along with a nonce.

If the server does not detect valid credentials from the database,
the client will receive “FAILED” along with a nonce

Requesting a Username
The client will send “GET_USERNAME” to the server along with an
email address, password, and a nonce.

If the server detects valid credentials from the database, the user
will receive the USERNAME along with a nonce.

If the server does not detect valid credentials from the database,
the client will receive “FAILED” along with a nonce

Verifying a User’s Account Information
The client will send “VERIFY_ACCOUNT” to the server along with
an email address, password, and a nonce.

If the server detects valid credentials from the database, the user
will receive “SUCCESS” along with a nonce.

If the server does not detect valid credentials from the database,
the client will receive “FAILED” along with a nonce

Requesting the Session Key
The client will send “KEY_REQ” to the server along with a
username or email address, password, and a nonce.

If the server successfully authenticates the user’s credentials, the
user will receive the chat room key “SESSION_KEY” along with a
nonce.

If the server cannot authenticate the user’s credentials, the client
will receive “FAILED” along with a nonce

Drawbacks
We did not implement a feature to refresh the Session Key after a
certain number of uses. This could lead to something such as a
Birthday Bound Attack.

We did not implement a feature for the user to obtain or reset their
username.

credit to https://vincentdnl.com/programming-memes/

Struggles we Came Across
How should the server keep track of people’s keys so that it can
respond to the correct person efficiently?

 SOLUTION: Assign each user a UUID (Unique User Identifier)
and use a HashMap to map each UUID to the correct AES key.

How will the server know when someone is in the chatroom or not
so that the chat messages can be distributed to them?

 SOLUTION: Using a thread pool, assign each thread a “state”; 0
standing for in communication with the server and not actively in
the chatroom, and 1 being in the chatroom. (Thanks Prof. K!)

Parts of The JCA We Learned
We utilized a class in the Java Cryptography Architecture
known as a SealedObject. It’s constructor takes two
parameters, one being a Serializable object, and the other
being a Cipher object. The SealedObject class encrypts the
Serializable object for you.

We created a class called SealedMessage which inherited
SealedObject’s properties. This allowed us to send
encrypted ServerMessages or ChatMessages without
having to worry about encrypting objects manually. This
meant we could simply send the SealedMessage over an
ObjectOutputStream or ObjectInputStream. The constructor
looks like this:

DEMO!

THANKS!

