

SIMIUIANCEOUSIY I d CONTMAETtal aid SECUre 1asiior

» USErs can create an account, reset tneir password, and login using a convenient
- and moer ava Swing GUI (Graphical Use Ji

=t g&
» Each message is displayed in a neat fash|on 0 every me ber of the group chat

with a timestamp and their username. T YT

» Requires 2-step authentication using HOTP (HI\/IAC-Based One-Time-Password). m

A\Es'/-nnl?l"l, L 'VA:" A,‘”, dpny IS USEd 1o transSmitIn Tormation sucn as
Keys and symmetric Lryptograpny IS used for tne transmission ot
other information.

’ RSAin. EG\(lectronic Code Book)
mode”to)ﬁer ea or Aé?rﬁ%ﬁrlc Cipher, and AES with AEAD
(Authenticated Encryption with Additional Data) as our Symmetric
Cipher.

» To implement our AES Cipher, we used GCM (Galois Counter
Mode), which allows us to verify the integrity of the message
without including something like a signature or MAC tag.

Client-Server Diffie-Hellman Key Exchange

» When a user connects to the server, the client sends a message notifying the server
that it will be starting a Diffie-Hellman Key Exchange. An exchange of certificates is
then completed. Specifically, it will be using Elliptic-Curve keys in the process.

» Using RSA and an encrypt-then-sign technique, the client would send it's public
Elliptic-Curve key to the server and wait for the server's public Elliptic-Curve key.

Once completed, both parties can compute the shared key and create an AES key
from the keying material.

_ . : “DO_DH_KEX” :
» Graphically, this would look like: ———————
' CA(k}) .
f—_———————— |

CA(kE)

, Ey(PKyl| Ny || sign(Ey; (PK4| Np)) :
—
, Eyu(PKg | Na) || sign(Ey (PKs || Na)) ,
—

Generate Shared Generate Shared
Secret Secret

» When the client attempts to create an account,
reset their password, or login the user will be
prompted to enter an email address and is then
prompted for an OTP.

» Depending on if they have an account or not, the
message to the server will include an email
address and password, or just an email address.

E("SAMPLE_OTP" || EM, || N,)

! Sample OTP and

E(OTP || Ny)

B
Ex("EXISTING_SAMPLE_OTP" || EM, || P4 || N)) ~ ——
- |

E,("VALID" || OTP || N,)

E; ("EXISTING_SAMPLE_OTP" || EM, || P4 || Na)
f_————»p |

E,("INVALID" || N,y

E email to client’s

email address

Verify user’s

i account exists and

email a new OTP

Verify user’s
account

e —

nrolling a User into the Data

» 1he client will send “ENROLL to the server along with an email
address, username, password, and a nonce.

» |f the server detects valid credentials from the database, the user
will receive “SUCCESS" along with a nonce.

E} ("ENROLL" [| EMy || Uy || Pal| Na)

Attempt to enroll
the user into the

Ek ("SUCCESS" | | NA) ; server’s database.

—

» |f the server does not detect valid credentials from the database,
the client will receive “FAILED" along with a nonce

Ey("ENROLL" || EM, || Uy || Pall Na) Attomp to el
the user into the

Ek ("FAILED" ” NA) E server’s database.

ose

» The client will send “GET_USERNAME" to the server along with an
email address, password, and a nonce.

» |f the server detects valid credentials from the database, the user
will receive the USERNAME along with a nonce.

E,("GET_USERNAME" || EM, || P,|| N,) | ot o find he

i user’s account and

E(USERNAME || N) i get their username.

A i C—

» If the server does not detect valid credentials from the database,
the client will receive “FAILED" along with a nonce

B
) E,("GET_USERNAME" || EM, || P4|| N,) —
G 5} Attempttofindthe

1 user’s account and

Ek ("FAILED" I | NA) E get their username.

»

»

»

Verifying a User s Account Information S

The client will send “VERIFY_ACCOUNT" to the server along with . “.

an email address, password, and a nonce.

If the server detects valid credentials from the database, the user
will receive “SUCCESS" along with a nonce. - =

B
E, ("VERIFY_ACCOUNT" || UE, || P4|| N4) =
i _— > : Attempt to verify

! the user’s account

Ek ("SUCCESS" ” NA) E information.

If the server does not detect valid credentials from the database,
the client will receive “FAILED" along with a nonce

B
: E,("VERIFY_ACCOUNT" || UE, || P,|| N) T Attermpt to vty
—

i the user’s account
E, ("FAILED" || Ny)

information.

Requesting the Session Key

» Iheclient will send *KEY_REQ" to the server along with a
username or email address, password, and a nonce.

» |f the server successfully authenticates the user's credentials, the

user will receive the chat room key “SESSION_KEY" along with a
nonce.

B
E("KEY_REQ" || UE || Pall Na) '

' Attempt to give the

E user the chat room

E,(SESSION_KEY || Ny) (session) key.

» If the server cannot authenticate the user’s credentials, the client
will receive “FAILED" along with a nonce
A B
T Ex ("KEY_REQ" || UE4 || Pal| N4) T

— i Attempt to give the

i user the chat room

Ek ("FAILED" | I NA) E (session) key.

e et el e e St

Username

— S S

~ HIDEAND SEEKCHAMPION

)

SINCE1958

credit to https://vincentdnl.com/programming-memes/

we Lame HCross

Cl KCC| 10K CUUIC

'espona to tne correct person etriciently

sznmm wwmuww‘ --«m'mnnﬁm

@ How will the server know when someone is in the chatroom or not

so that the chat messages can be distributed to them?m/*\‘
Q SOLUTION: Using a thread pool, assign each thread a “state”; 0
standing for in communication with the server and not actively in
the chatroom, and 1 being in the chatroom. (Thanks Prof. KI)

Parts of Ine JUH We Learned

known as a SealedObject. It's constructor takes two PSS SY “ ‘
parameters, one being a Serializable object, and the other
being a Cipher object. The SealedObject class encrypts the
Serializable object for you.

» We created a class called SealedMessage which inherited
SealedObject’s properties. This allowed us to send
encrypted ServerMessages or ChatMessages without
having to worry about encrypting objects manually. This
meant we could simply send the SealedMessage over an
ObjectOutputStream or ObjectinputStream. The constructor
looks like this:

public class SealedMessage extends SealedObject implements Serializable
{
private final int UUID;
private final byte[] IV;
private static final long serialVersionUID -6743567631108323096L;
private final int TYPE;

public SealedMessage (Serializable data, Cipher cipher, final int UUID,

byte[] iv) throws IOException, IllegalBlockSizeException

