forked from zhizhongpu/solutions_econometrics_hansen
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Chap7.tex
160 lines (123 loc) · 5.14 KB
/
Chap7.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
\documentclass[12pt,letterpaper,reqno]{amsart}
\setlength{\oddsidemargin}{.0in}
\setlength{\evensidemargin}{.0in}
\setlength{\textwidth}{6.5in}
\setlength{\topmargin}{-.3in}
\setlength{\headsep}{.20in}
\setlength{\textheight}{9.in}
\usepackage{amsmath}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsthm}
\usepackage[all]{xy}
\usepackage{graphicx}
\usepackage{setspace}
\doublespace
%Here are some user-defined notations
\newcommand{\E}{\mathbb E}
\newcommand{\R}{\mathbb R}
\newcommand{\I}{\mathbb I}
%improving spacing in tables (space above and below characters in a row)
\newcommand{\tfix}{\rule{0pt}{2.6ex}}
\newcommand{\bfix}{\rule[-1.2ex]{0pt}{0pt}}
%Here are commands with variable inputs
\newcommand{\intf}[1]{\int_a^b{#1}\,dx}
\newcommand{\intfb}[3]{\int_{#1}^{#2}{#3}\,dx}
\newcommand{\pln}[1]{$\sm${\tt #1}}
\newcommand{\bgn}[1]{$\tt {\sm}begin\{#1\}$}
\newcommand{\nd}[1]{$\tt {\sm}end\{#1\}$}
\newcommand{\marginalfootnote}[1]{%
\footnote{#1}
\marginpar[\hfill{\sf\thefootnote}]{{\sf\thefootnote}}}
\newcommand{\edit}[1]{\marginalfootnote{#1}}
\newtheorem*{wellorder*}{Well Ordering Principle}
%These commands deal with theorem-like environments (i.e., italic)
\theoremstyle{plain}
\newtheorem{theorem}{Theorem}[section]
\newtheorem{corollary}[theorem]{Corollary}
\newtheorem{lemma}[theorem]{Lemma}
\newtheorem{conjecture}[theorem]{Conjecture}
%\newtheorem{wellorder}[theorem]{Well Ordering Principle}
%\newtheorem{equation}{Theorem}[section]
%These deal with definition-like environments (i.e., non-italic)
\theoremstyle{definition}
\newtheorem{definition}[theorem]{Definition}
\newtheorem{example}[theorem]{Example}
\newtheorem{remark}[theorem]{Remark}
\theoremstyle{definition}
\newtheorem{Exercise}{Exercise 7.}
%This numbers equations by section
\numberwithin{equation}{section}
%\numberwithin{equation}{Theorem}[section]
%This is for hypertext references
\usepackage{color}
\usepackage{hyperref}
\hypersetup{
colorlinks=true,
linkcolor=blue,
filecolor=blue,
urlcolor=blue,
pdftitle={Overleaf Example},
pdfpagemode=FullScreen,
}
\begin{document}
\author{Zhizhong Pu}
\title{Solutions - Chapter 7}
\date{April 2023}
\maketitle
\thispagestyle{empty}
%% 4.1
\begin{Exercise} Question see book.
Given the DGS: $Y=X_1'\beta_1+X_2'\beta_2+e$ with $\E[Xe]=0$, regressing $Y$ on $X_1$ only yields
\[\begin{split}
\hat{\beta_1} & = (X_1X_1')^{-1}X_1Y \\
& = (X_1X_1')^{-1}X_1(X_1'\beta_1+X_2'\beta_2+e) \\
& = \beta_1 + (X_1X_1')^{-1}(X_1X_2'\beta_2) + (X_1X_1')^{-1}(X_1e) \\
& = \beta_1 + (\frac{1}{n} \sum_{i=1}^n X_{1i} X_{1i}')^{-1} (\frac{1}{n} \sum_{i=1}^n X_{1i} X_{2i}' )\beta_2 + (\frac{1}{n} \sum_{i=1}^n X_{1i} X_{1i}')^{-1} (\frac{1}{n} \sum_{i=1}^n X_{1i} e_i)
\end{split}\]
Note that by WLLN, we have
\begin{enumerate}
\item $(\frac{1}{n} \sum_{i=1}^n X_{1i} X_{1i}')^{-1} \rightarrow \E[X_1X_1']^{-1}$
\item $\frac{1}{n} \sum_{i=1}^n X_{1i} e_i \rightarrow \E[X_1e] = 0$
\item $\frac{1}{n} \sum_{i=1}^n X_{1i} X_{2i}' \rightarrow \E[X_1X_2']$ if $\E[X_1X_2']<\infty$
\end{enumerate}
Then $\hat{\beta_1}$ is generally not consistent, and it is consistent iff $\E[X_1X_2'] = 0$ or $\beta_2 = 0$
\end{Exercise}
%% 7.2
\begin{Exercise}\end{Exercise}
%% 7.3
\begin{Exercise}\end{Exercise}
%% 7.4
\begin{Exercise}\end{Exercise}
%% 7.5
\begin{Exercise}\end{Exercise}
%% 7.6
\begin{Exercise} Full problem see book. Find the method of moments estimators $(\hat{\beta},\hat{\Omega})$ for $(\beta,\Omega)$ where $\Omega = \E[XX'e^2]$.
Since $\hat{\beta} = \E[XX']\E[XY]$, then we could substitute in the sample moment for population moment: $\hat{\beta}_{MoM} = (\frac{1}{n} \sum_{i=1}^n X_i X_i')^{-1} (\frac{1}{n} \sum_{i=1}^n X_i Y_i') $. And we can do the same for $\Omega$:
\[
\hat{\Omega}_{MoM} = (\frac{1}{n} \sum_{i=1}^n X_i X_i' e_i^2)
\]
\end{Exercise}
%% 7.7
\begin{Exercise}\end{Exercise}
%% 7.8
\begin{Exercise} Find the asymptotic distribution of $\sqrt{n}(\widehat{\sigma^2} - \sigma^2)$ as $n \rightarrow \infty$
First, we can re-write:
\[\begin{split}
\sqrt{n}(\widehat{\sigma^2} - \sigma^2) & = \sqrt{n}(\widehat{\sigma^2} - \frac{n-k}{n} \sigma^2 - \frac{k}{n} \sigma^2) \\
& = \sqrt{n}(\widehat{\sigma^2} - \frac{n-k}{n} \sigma^2) - \frac{k}{\sqrt{n}} \sigma^2
\end{split}\]
Note that $\widehat{\sigma^2} \equiv n^{-1} \sum_{i=1}^n \hat{e}'\hat{e} $ by definition and that in Chapter 4.11 we have established that
\[
\E[\widehat{\sigma^2}] = \frac{n-k}{n} \sigma^2
\]
Then we can view $\widehat{\sigma^2}$ and $\frac{n-k}{n}$ as a sample mean and its population mean, respectively. This warrants applying the CLT, which states that
\[
\sqrt{n}(\widehat{\sigma^2} - \frac{n-k}{n} \sigma^2) \xrightarrow[]{d} \mathcal{N}(0,V)
\]
where $V=\E[(\widehat{\sigma^2} - \frac{n-k}{n} \sigma^2)^2]$. Lastly, as $- \frac{k}{\sqrt{n}} \sigma^2$ is a constant that converges to $0$, adding it is equivalent to a mean-shift of size $0$. Then
\[
\sqrt{n}(\widehat{\sigma^2} - \sigma^2) \xrightarrow[]{d} \mathcal{N}(0,V)
\]
\end{Exercise}
\end{document}