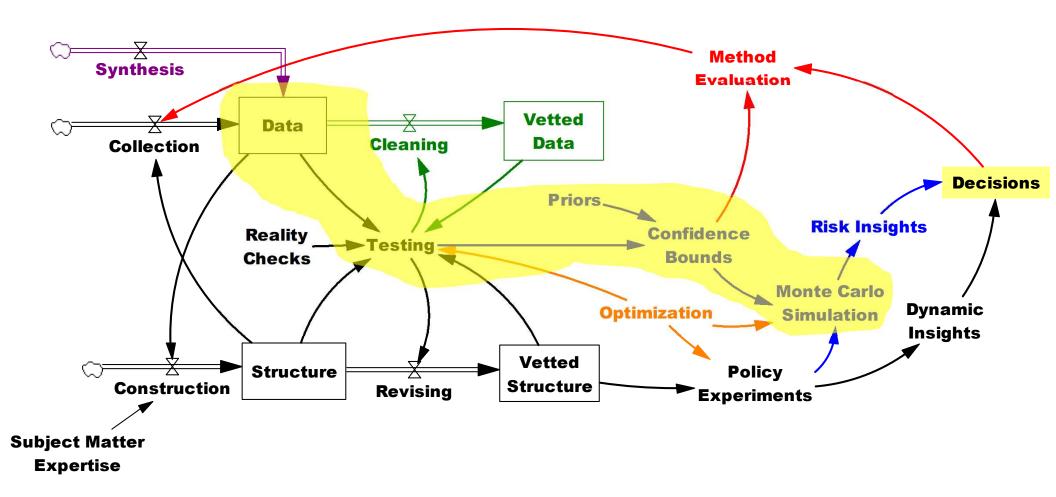


Linking systems thinking to powerful dynamic models

Calibration with Vensim


Tom Fiddaman 2022

Agenda

- Introduction
- Synthetic data
- Naïve calibration
- Maximum likelihood
- Markov Chain Monte Carlo (MCMC)
- Kalman filtering (briefly)

The Big Picture

Overview

- Lotka-Volterra Predator-Prey model
- Generate synthetic data, by adding:
 - Measurement error to the stocks of elk and wolves
 - Driving noise to the flows of births and mortality
- Estimate parameters of the model from the data, by various methods
 - Optionally, use mismatched structure (2nd order datagenerating model, first order estimated model)

Caveats

In order to get done, we're approaching this problem a bit fast and loose. Be aware:

- There is structural uncertainty as well as parameter uncertainty
- Statistics deserve deeper thought
 - Weights
 - Covariance
 - Autocorrelation
 - Distributional assumptions
 - Measurement error & driving noise (Kalman filter)
- We should be testing for multiple optima with multistart calibration runs
- Sample sizes for sensitivity and MCMC may be too small

VENTANA

Other Pitfalls

- State dependent noise
- Sample size
- Data quality
- Autocorrelated errors
- Error covariance
- Measurement error
- State estimation
- Endogeneity

Calibration

• Purposes

- Make better predictions or measurements
- Reject models that can't replicate data (potentially a weak test of quality)
- Learn about the model
- Learn about the data
- Provide face validity for reviewers

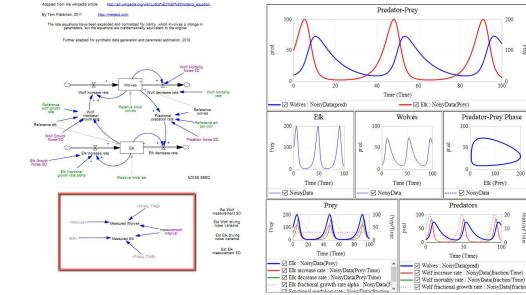
Closeness Measures

- Sum of squared errors & R²
- Mean Absolute Deviation
- Mean Absolute Percent Error
- Log Likelihood

• Process

- Assume the model structure is right
 - If possible, test alternatives!
- Simulate the model
 - Measure the closeness
 - Adjust the constants in the model
 - Iterate to improve
- After convergence, evaluate the fit
 - Decide if the model needs revision
 - Investigate puzzles in the data

Model Tour


Synthetic Data Generation

Open the data-generating model

VENTANA

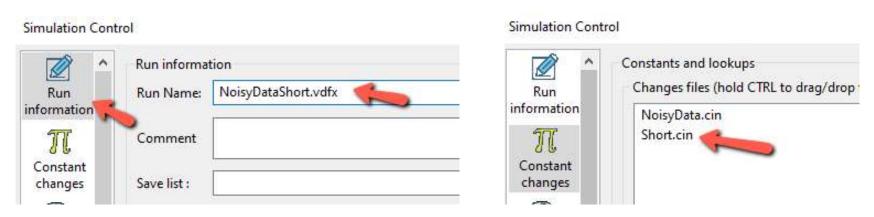
Name	Status	Date modified	Туре	Size
📙 ElkWolves - estimate - kalman	0	7/23/2021 2:02 PM	File folder	
ElkWolves - estimate - mcmc	0	7/23/2021 2:06 PM	File folder	
📙 ElkWolves - estimate - naive	0	7/23/2021 2:02 PM	File folder	
ElkWolves - estimate - start	0	7/23/2021 2:03 PM	File folder	
📙 ElkWolves - estimate - weighted	0	7/23/2021 2:03 PM	File folder	
📙 ElkWolves - generate 🛛 - 🦛) 3	7/28/2021 7:17 PM	File folder	
ElkWolves - generate - 20	0	7/23/2021 2:03 PM	File folder	

Run, and take a look at the "measured" variables (red • box) Predator-Prey

Vensim[®] Copyright © 2021 Ventana Systems, Inc. Ventana is a registered trademark and a registered service mark of Ventana Systems, Inc.

Pre

Synthetic Data Generation

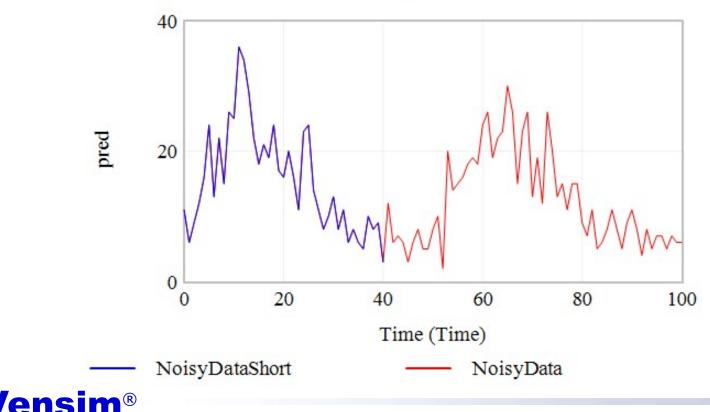

Load "NoisyData.cin" and run the model

Simulation Control

VENTANA

Run ^	Constants and lookups Changes files (hold CTRL to drag/drop to change the load order, double click to edit)
information	NoisyData.cin
π	
Constant 📢	
changes	
Data	
-R-Re	Load CIN files as double precision
	Overwrite GET CONSTANTS equations

 Run again, but add "short" to the run name, and load "Short.cin" to set FINAL TIME=40


Vensim[®] Copyright © 2021 Ventana Systems, Inc. Ventana is a registered trademark and a registered service mark of Ventana Systems, Inc.

Synthetic Data Generation

• This gives you 2 datasets

VENTANA

- Short time series, used to estimate parameters; export and re-import using a savelist to restrict the information to the measured state only
- Long time series, for comparison of later estimates with "truth"

Measured Wolves

Copyright © 2021 Ventana Systems, Inc. Ventana is a registered trademark and a registered service mark of Ventana Systems, Inc.

Naïve Calibration

- Create a simple metric describing the distance of the model from the data
- Minimize the distance

Mechanics – What We Need

• Data

VENTANA

- A .vdf file, or
- Equations with GET DIRECT DATA, GET XLS DATA
- ODBC
- A Payoff specifying what data series to match, and how to weight each one
- An Optimization Control file specifying
 - which parameters to vary, and
 - what methods to use
- The optimizer then hill climbs to find the parameters that minimize the error between model and data

Naïve Calibration What do we get?

- A run (.vdfx) with the best parameters
- An output file (.out) summarizing the parameters found
 - Parameters can then be reused by loading the .out as a Changes file (like .cin files)
- A Payoff Report (.rep) with diagnostics (optionally)

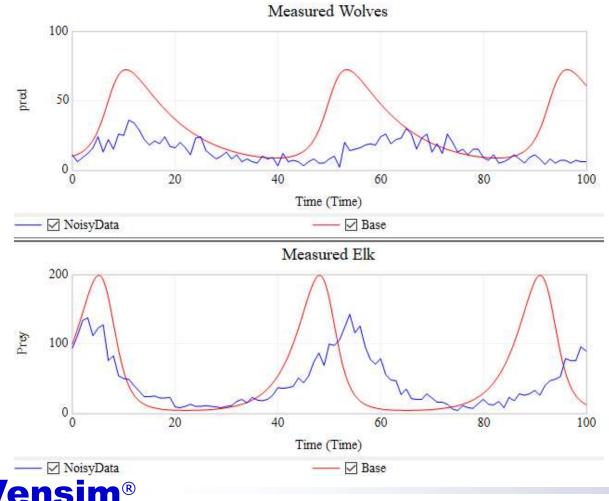
Naïve Calibration Setup

• Copy the data files you created from the data generator model to the "start" model folder

rsonal)	Name	Status	Date modified	Туре	Size
	elk wolf meas.lst	0	8/7/2018 4:36 PM	MASM Listing	1 KB
ersonal Elk-Wolves 1.mdl	Elk-Wolves 1.mdl	0	8/8/2018 7:11 AM	Vensim model (M	11 KB
entana Sj	🗋 NoisyData.cin	0	8/8/2018 5:58 AM	CIN File	1 KB
	📄 NoisyData.vdfx 🛛 🗸	S	7/28/2021 9:39 PM	VDFX File	69 KB
box	📄 NoisyDataShort.vdfx 🛛 💙 💳	_ c	7/28/2021 9:39 PM	VDFX File	33 KB
	Short.cin	0	7/28/2021 7:12 PM	CIN File	1 KB
1.00	wolf elk state.lst	0	8/7/2018 4:34 PM	MASM Listing	1 KB

• Open the starting point model

ame	Status	Date modified	Туре
ElkWolves - estimate - kalman	0	7/23/2021 2:02 PM	File folder
ElkWolves - estimate - mcmc	0	7/23/2021 2:06 PM	File folder
ElkWolves - estimate - naive	0	7/23/2021 2:02 PM	File folder
📙 ElkWolves - estimate - start 🛛 🛛 🌉	_ 0	7/28/2021 9:11 PM	File folder
ElkWolves - estimate - weighted	0	7/23/2021 2:03 PM	File folder
ElkWolves - generate	0	7/28/2021 7:32 PM	File folder
ElkWolves - generate - 20	0	7/28/2021 7:30 PM	File folder



Naïve Calibration Setup

• Do a "Base" run (uncalibrated)

VENTANA

- Load the data from NoisyData or NoisyDataShort
- Notice how the model doesn't fit the data well

Copyright © 2021 Ventana Systems, Inc. Ventana is a registered trademark and a registered service mark of Ventana Systems, Inc.

Naïve Calibration Setup

- Change the runname ("NaiveCal.vdfx" or similar)
- Go to the Data tab
 - Load comparison data (recommend the short version)

Simulation Con	trol
<u> </u>	Data files (hold CTRL to drag/drop to change the load order)
Run information	NoisyDataShort.vdfx
Constant changes	
Data	

Naïve Calibration Setup (Continued)

- Change the runname ("NaiveCal.vdfx" or similar)
- Go to the Optimize pane
 - Create a Payoff (.vpd)
 - Create a Control file (.voc)

Simulation Control

VEN

<u> </u>	Optimization							
Run information	Payoff definition :	Naive.vpd						?
T Constant changes	Optimization Control :	Note : If running optir defined here will be us Simple.voc		nan active, the p	oayoff definition		d 🗹	2
	Payoff report							0
Data	eset							
•	Hit the <mark>Opt</mark> i	mize but	ton					
Simulate	🕪 SyntheSim 🛛 🚮 Gai	me 谢 Sensitivity	🎄 Optimize	🐞 мсмс	🚱 Reality Check	🖹 Save Changes	🗙 Cancel	Ľ
	ensim® _{copyrigh}							18
	Copyrigh	t © 2021 Ventana System	ns, Inc. Ventana is	a registered trade	emark and a registered s	ervice mark of Ventana S	Systems, Inc.	

	Payoff De	finition						×
Payoff	Payoff De Filename	finition. Edit the filena e:	ame to save change	es to a differe	nt control file			
(.vpd)	Unweig	ghtedFit.vpd			Browse	Save As	Clear Settings	
	Payoff E	lements						
		tion:Normal:Always:No tion:Normal:Always:No			1			
	ſ	Payoff Element						
		Payoff type						
		 Calibration 			C Policy	y		
		- Payoff details						
		Variable	Elk					Sel
		Compare to	Measured E	lk				Sel
		Weight	1					Sel
			ld be positive for ca ter and a negative			ations use a positi	ve number	
		Transform	None		-			
		Distribution	Normal		•			
		Timing	Always		Ŧ			
ENTANA		L		OK	Canc	el		

Calibration Payoff Types

Payoff Element		X
Payoff type		
 Calibration 	Туре	C Policy
Payoff details		
Variable	Ek Model V	ariable Sel
Compare to	Measured Elk	ata Variable (optional if data names match)
Weight	1 Scale or V	Veight (interpretation depends on distribution)
	ould be positive for calibrat letter and a negative numb	tion. For policy optimizations use a positive number per when less is better.
Transform	None	Log transform?
Distribution	Normal	Error distribution assumption & forma
Timing	Always	
		OK Cancel

VENTANA Vensim®

The Payoff File (.vpd) as text

*C

Keyword indicating type (calibration = *C, policy = *P, etc.)

wolves|measured wolves/1
Model variable | data variable / weight or scale parameter

The weight can also be a variable.

Subscript ranges are OK, as long as they match.

Optimization Control File (.voc)

Optimization Control Filename Optimization Control. Edit the filename to save changes to a different control file Parameters.voc Browse Save As... Clear Settings Filename: Optimizer Optimizer Powell Stochastic Seed No -Random type 2 Tol Mult 21 Pass Limit Default -Output Level -Frac Tol 0.0003 0n Trace Off ABS Tol -25 Vector Points Scale ABS Sensitivity Max Iterations 1000 Off -= Multiple Start Max Sims Off -#Restart 0 Choose optimization parameters 0<=Reference wolf growth rate<=1 **Delete Selected** 0<=Reference elk per wolf<=1 0<=Relative initial elk<=2 Add Constant... 0<=Relative initial wolves<=2 0<=Elk fractional growth rate alpha<=1 0<=Wolf mortality rate<=1 <= <= = Model value of constant ---OK Cancel

22

VENTANA

Parameters & Bounds

Method & Settings

The Optimization Control File as text

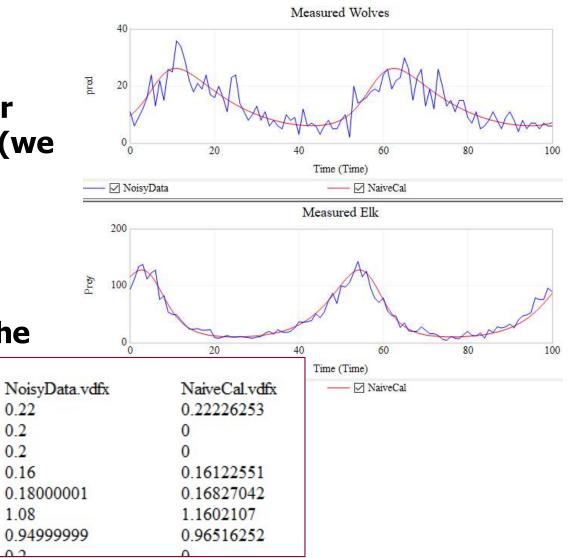
- :OPTIMIZER=Powell
- :SENSITIVITY=Off
- :MULTIPLE START=Off
-

List of parameters to optimize:

```
0<=Reference wolf growth rate<=1
0<=Reference elk per wolf<=1
0<=Relative initial elk<=2</pre>
```

Min <= Variable Name = Initial Guess <= Max Subscript ranges are OK. Initial Guess is often omitted.

...


Optimize Sample results are in

ElkWolves - estimate - naive

- The model now fits the data (hopefully)
- It fits in the future, after the short data runs out (we probably made this too easy)
- Verify: use the Runs Compare tool to see if the parameters match the synthetic data model

Vensim[®]

VENTANA

Variations

• Try again with ...

- an even shorter input data series
- more noise in the generator
- the 2nd order model data
- a longer forecast horizon

Vensim® Software

Linking systems thinking to powerful dynamic models

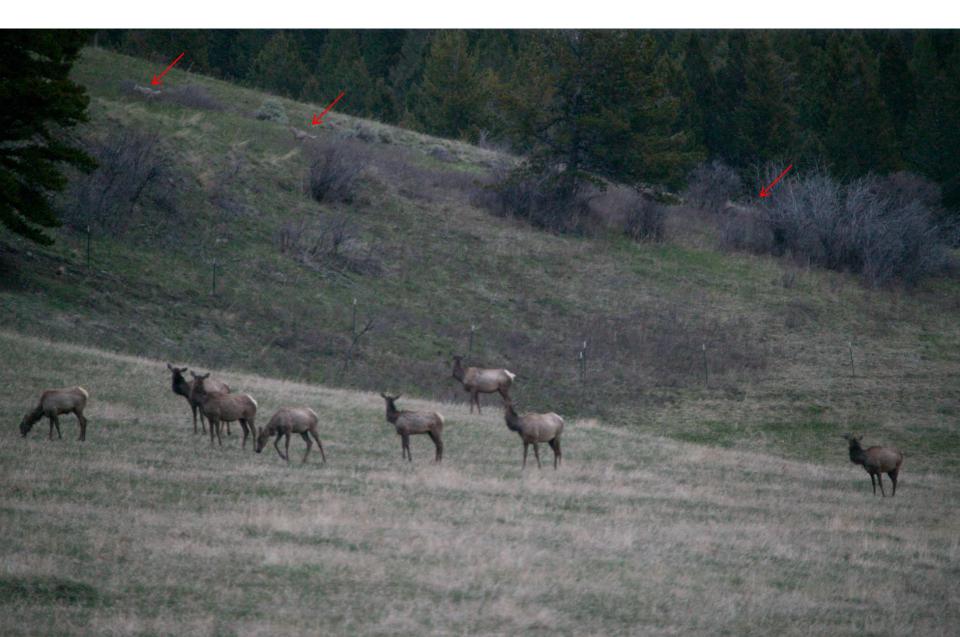
Calibration with Vensim – Part 2

Tom Fiddaman 2022

Advanced Calibration

- Weighting Payoff Elements
- Kalman Filtering
- Markov Chain Monte Carlo
- Sensitivity

Less-Naïve Calibration


• Weight (model-data) comparisons

Motivation

VENTANA

- To recognize varying scale and quality
 - At different times (bigger data -> bigger error)
 - Of different measurements (#elk > #wolves, or wolf error > elk error)
- For computation of confidence bounds
 - A properly-weighted likelihood has a known distribution and is compatible with MCMC
- In many cases, we can estimate the weights

Example – Lots of elk, any wolves?

Maximum Likelihood

- Choose the value of parameters that maximizes the likelihood of observing the data given the model
- This is called a Maximum Likelihood Estimator (MLE)
- Suppose there is more than one observation
 - Then the likelihood is the product of the individual likelihoods for each data point
 - Working with log likelihood is easier, because ln() converts the product to a sum
- Likelihood expresses the probability of getting the data observed from your model, not the chance that the model is right

Likelihood Surface Gaussian errors

• Likelihood =
$$\frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(model-data)^2}{\sigma}^2/2}$$

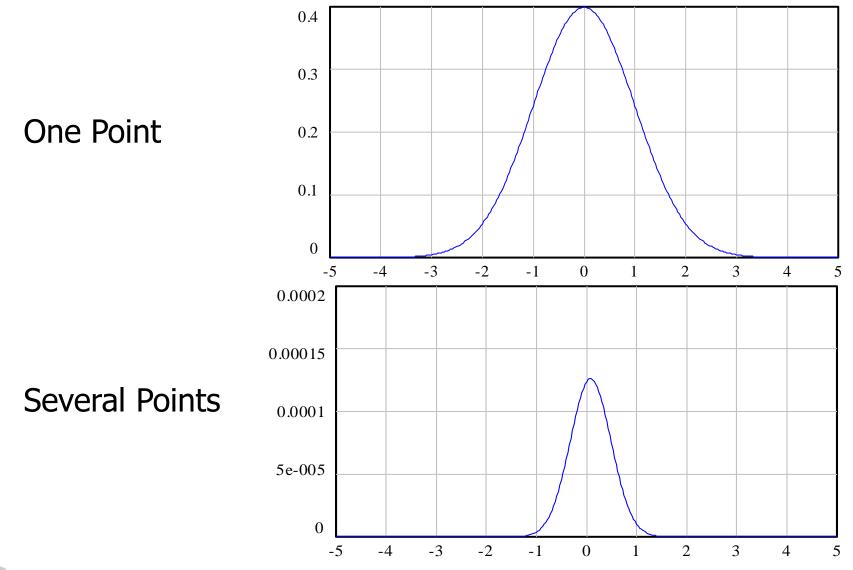
- This is the PDF of the Gaussian (Normal) distribution
- σ represents the standard error associated with a data point, corresponding with the weight assigned in Vensim (or its inverse)

Log-Likelihood Gaussian errors

• Likelihood =
$$\frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(model-data)^2}{\sigma}^2/2}$$

- Log(Likelihood) =
 - $LN(\sigma)$ the bigger the σ , the lower the likelihood, as it's spread thinner
 - $LN(\sqrt{2\pi})$ this is a constant we can ignore

 $-\frac{\left(\frac{model-data}{\sigma}\right)^{2}}{2}$ - the weighted sum of squares, as in the naïve method, but for the factor /2


Log Likelihood Gaussian errors

- Likelihoods combine multiplicatively, i.e. Likelihood(A and B) = Likelihood(A)*Likelihood(B)
- Log likelihoods therefore sum, LN(Likelihood(A and B))
 = LN(Likelihood(A)) + LN(Likelihood(B))

• $\left(\frac{model-data}{\sigma}\right)^2$ is $\left(\frac{\text{error}}{\sigma}\right)^2$ so if we've guessed right about σ_r , we expect this to have magnitude ~1.

- For multiple data points, we expect the weighted sum of squares to have magnitude of the number of data points, and have a Chi-squared distribution.
- Therefore a properly-weighted payoff should have a magnitude of N or N/2 (depending on the method choice)

Adding data shrinks the likelihood peak

VENTANA

Copyright © 2021 Ventana Systems, Inc. Ventana is a registered trademark and a registered service mark of Ventana Systems, Inc.

Error Distribution Assumptions

- N Normal (simplest used first for naïve estimate)
 - Payoff is the sum of (model-data)^{2*}weight
 - Weight = 1/(standard error of measurement)
 - Proportional to 2*log likelihood
 - You can't estimate the weight as a parameter
- G Gaussian (often best choice)
 - Sum of ((model-data)/StdDev)²/2 LN(StdDev)
 - This is a log likelihood (up to a constant multiplier) and can be used to estimate the StdDev
- K Kalman

VENTANA

 Same as Gaussian, but specified with Variance instead of StdDev (primarily for use with the Kalman filter)

Error Distribution Assumptions 2

• R – Robust

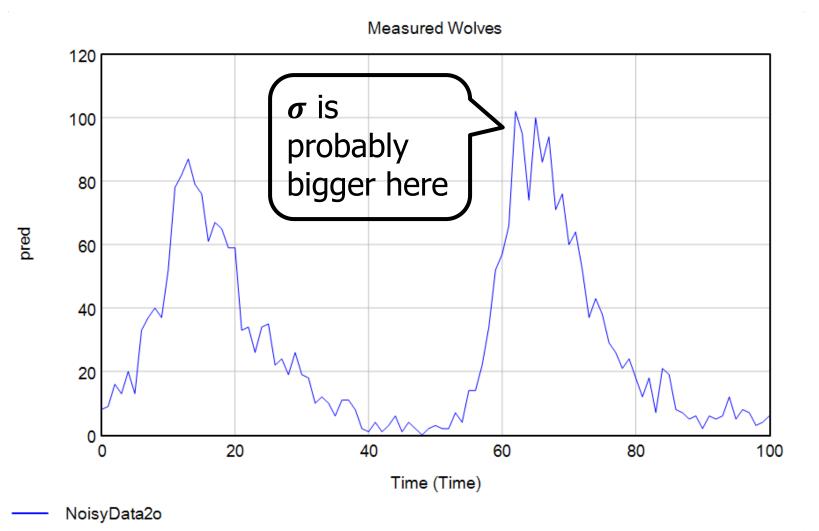
- Sum of ABS((model-data) /AbsErr) LN(AbsErr)
- AbsErr scale parameter is a median absolute deviation rather than standard deviation
- This is a log likelihood (up to a constant multiplier) and can be used to estimate the AbsErr
- Not as efficient as Gaussian, but resistant to contaminated data
- (Others Robust/Huber, Poisson, etc.)
- For most purposes (not COVID!), use Normal, Gaussian, Kalman or Robust
- Normal, Gaussian, Kalman differ only in interpretation of the weight

How do you determine σ ?

• Guess:

- "plus or minus x%"
- Standard deviation of the data (if stationary)

• Iterate:


- Run the model
- Look at the payoff or the residuals
- Adjust the error toward what you observe

• Estimate:

- Include the error or weight as an optimization control parameter
- Requires extra terms in the payoff

- Likelihood
$$e^{-\frac{model-data}{\sigma}^2/2}$$

Scale Variation

13

Response to Scale Variation

- Log-transform the data
- Then σ represents the fractional error, rather than the absolute error
- This doesn't work if the data includes 0, but there are other quasi-log transformations that could be used
- It also doesn't work for data with both negative and positive values, for which an absolute error makes more sense

There's an option for that ... Policy Payoff Types

Payoff Element		×
Payoff type Calibration	O Policy	
Payoff details		
Variable	Wolves	Sel
Compare to	Measured Wolves	Sel
StdDev	Est Wolf measurement SD frac	Sel
	ositive for calibration. For policy optimizations use a positive number d a negative number when less is better.	
Transform	Log v 🔶	
Distribution	Gaussian 🗸	
Timing	Always ~	
	OK Cancel	

Weighted Calibration Setup

ElkWolves - estimate - weighted

• Go to the Advanced tab

- Load comparison data (recommend NoisyDataShort.cin)
- Create a Payoff (.vpd) different weighting
- Create a Control file (.voc) adds error terms

• Hit the Optimize button

Simulation Control		
Optimiz	zation	
	i definition : LogWeightedFit.vpd	2
π	Note : If running optimization with Kalman active, the payoff definition defined here will be used.	
Constant changes Optimi	ization Control : Parameters+SD.voc	
➡ 📑 🛛 Pay	/off report	?
Data 🥯	et .	
Sensitivity		
24	Check this box	
Optimize	the in the second	
	THIS DOX	
мсмс		
< >		
Simulate Synth	neSim 🙀 Game 🕸 Sensitivity 🞄 Optimize 🗱 MCMC 🚱 Reality Check 🖺 Save Changes 🗙	Cancel
R		

	Browse Save As Clear Settings
Payoff Elements	
Calibration:Gaussian:Always	s:Log:Wolves Measured Wolves/Est Wolf measurement SD frac
Calibration:Gaussian:Always	s:Log:Elk Measured Elk/Est Elk measurement SD frac
Payoff Element	
Payoff type	
Calibration	
Ŭ	0.1000
Payoff details	
Variable	Wolves
	Hannes (Males)
Compare to	Measured Wolves
Compare to StdDev	Est Wolf measurement SD frac
StdDev The weight sho	
StdDev The weight sho	Est Wolf measurement SD frac

Cancel

0K

Optimization Control File (.voc)

Method & Settings (no change)

Parameters & Bounds (adds error terms)

Optimization Cont	trol			
	rol. Edit the filena meters+SD.voc	me to save change	es to a different control file Browse Save As Clear Settings	
Optimizer				
Optimizer Random type	Powell ~ Default ~	Stochastic Pass Limit	No Seed 2 Tol Mult	
Output Level	On ~	Frac Tol		
Trace Vector Points	Off ∽ 25	ABS Tol Scale ABS	1 Don't overwrite GETXLS 1 Create CIN	
Max Iterations Max Sims	1000	Sensitivity Multiple Start	Payoff Valu ~ = 1.92 BBandom ~ #Restart 4	
Choose optimization 0<=Relative initial 0<=Elk fractional 0<=Elk fractional 0<=Est Wolf measu 0<=Est Elk measu	Iwolves<=2 growth rate alpha- rate<=1 surement SD frac-	(=1	 ▲ Delete Selected ▲ Add Constant ✓ 	
<= Model value of co	onstant			
		ОК	Cancel	

Payoff Report

- Open the <u>runname</u>.rep file (a text editor is OK, but Excel is better for viewing)
- Contents, for each data series:
 - Contribution to payoff
 - Source of data, # of points
 - R^2
 - Durbin Watson & Autocorrelation
 - Theil statistics
 - MSE = mean squared error, Um = unequal means, Us = unequal variance, Uc = unequal covariance
 - MAE, MAPE, MAEoM

Addressing Pitfalls – Kalman filtering

- State dependent noise
- Sample size
- Data quality
- Autocorrelated errors
- Error covariance
- Measurement error
- State estimation
- Endogeneity

The General Problem

- If the state of the model has drifted away from the state of the world, the model's incremental responses are likely to be wrong
- Ordinary Least Squares on first differences essentially assumes that the data is always right
- Ordinary simulations assume that the model is always right
- Ideal: blend the apparent state in the data with the model's estimate of system state (which includes information from prior data)



Example: GPS mapping

- The observer has six states:
 - Position X, Y, Z (lat, lon, altitude)
 - Velocity dX, dY, dZ
- The device takes intermittent noisy measurements of position only
- A simple approach to noise is to smooth successive position estimates, but that introduces a lag – we can do better with a model
- From physics: Position = Integral(Velocity)
- Strategy:

- Maintain estimates of position and velocity states
- Integrate velocity to predict position changes
- Update towards the measurements as they arrive

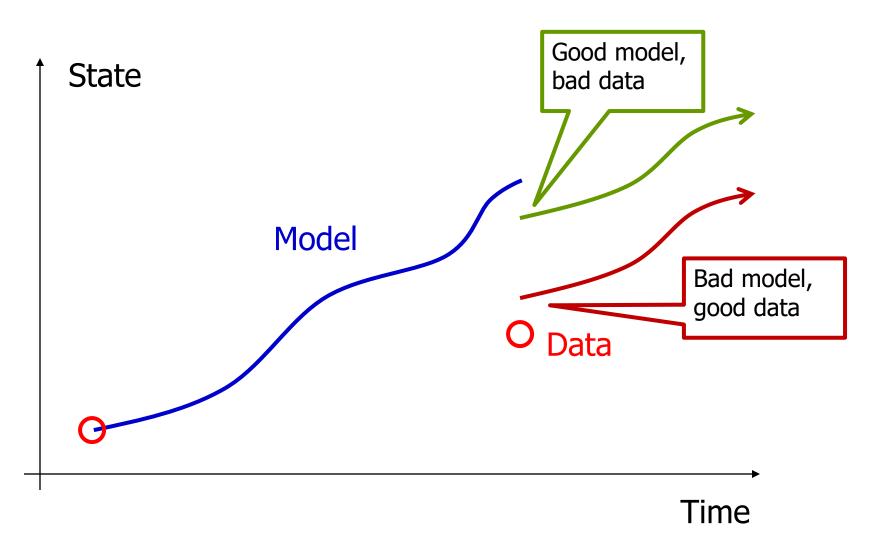
Kalman Filtering

How far to update?

• Consider:

- How reliable is the data?
- How reliable is the model up to that point?

• Bayesian update (assuming Gaussian errors):


- New state = variance-weighted combination of model and data = $(Model/Var_{model} + Data/Var_{data})/(1/Var_{model} + 1/Var_{data})$
- Update variance similarly

• Complications

Vensim[®]

- Need to consider covariance (track N_{states}^2)
- Data might not measure states directly (need linear algebra)
- Non-Gaussian errors & outliers

Kalman Filtering

Is the forecast in the confidence bounds?

Why Confidence Bounds? Perspectives

• Statistical

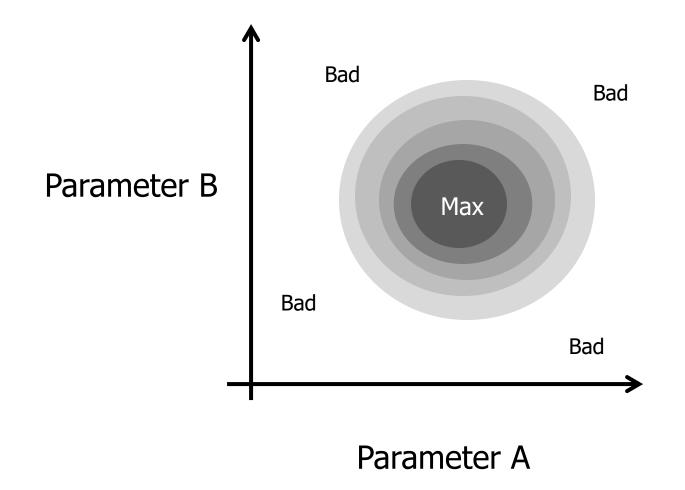
- Is an effect significantly different from zero?

• Practical

- What does uncertainty imply for policy?
- What data might narrow the bounds?

Several Paths to Confidence Bounds

• Old way

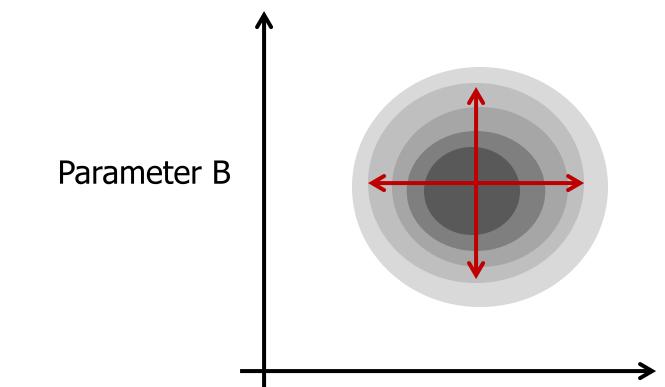

- Optimize to find the best fit to data
- Explore the payoff surface around the maximum

• New ways

- Bootstrapping (draw samples from the data)
- Markov Chain Monte Carlo (MCMC)

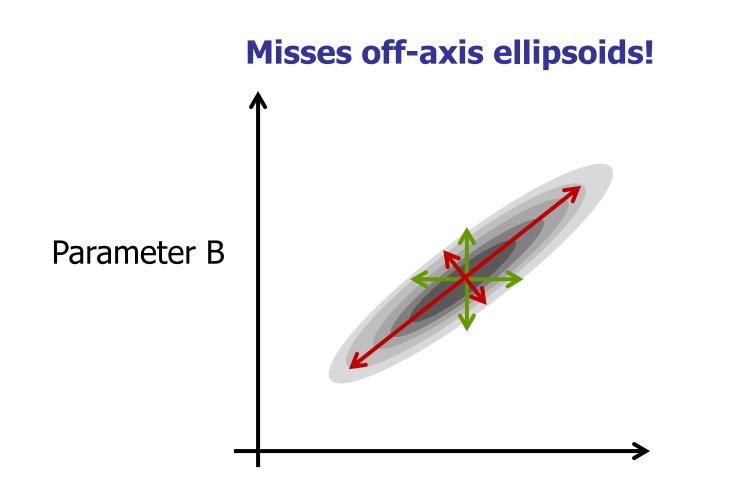
Multidimensional Likelihood

Confidence Bounds & Likelihood


• Gaussian Likelihood = $\frac{1}{\sigma\sqrt{2\pi}}e^{-(\frac{model-data}{\sigma})^2/2}$

- Log Likelihood $\approx -\ln \sigma \frac{(\frac{model-data}{\sigma})^2}{2}$ (leaving out invariant terms)
- A weighted log-likelihood calibration payoff is a sum of squares; 2*Log(likelihood/best likelihood) is distributed Chi-squared with one degree of freedom
- The expected value is the number of data points
- Varying the payoff by the ChiSq critical value at 95% yields a 95% confidence bound
 - If your payoff uses the "Normal" distribution setting, 3.84
 - If you use "Gaussian" (preferred), 1.92 (=3.84/2)
 - (Difference is due to presence or absence of the /2 factor)

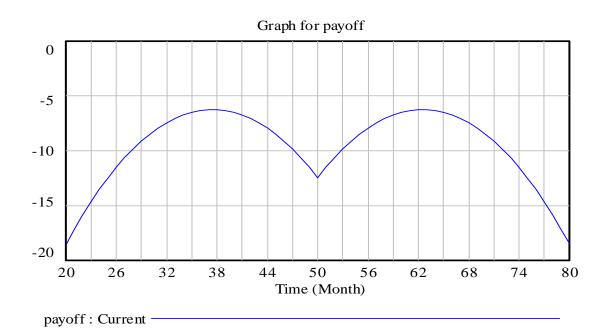
Standard Vensim payoff value sensitivity


• Test the payoff surface in the direction of each parameter independently

VENTANA

Vensim[®] Copyright © 2021 Ventana Systems, Inc. Ventana is a registered trademark and a registered service mark of Ventana Systems, Inc.

Parameter A

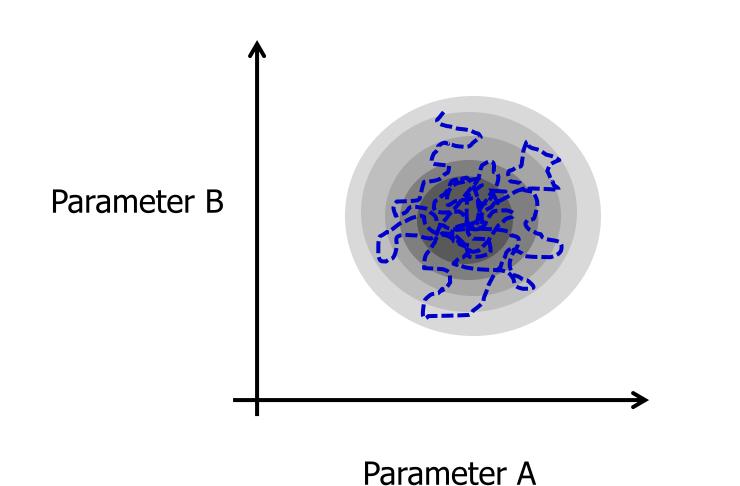

• Even harder if the likelihood surface is shaped like a banana, or a snake, or a bag of 10-dimensional jellybeans...

VENTANA

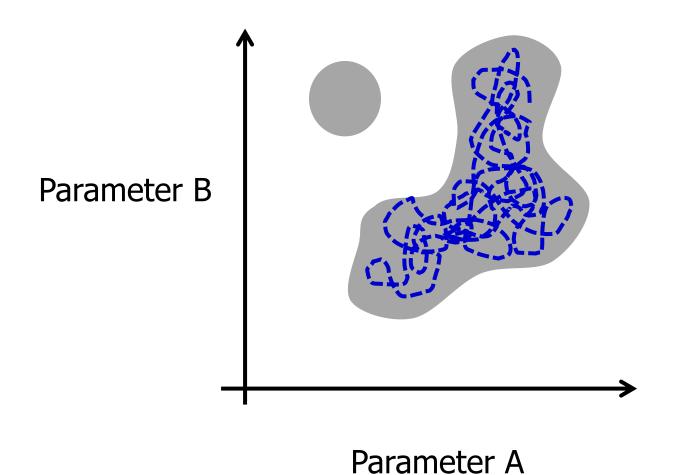
Vensim[®] Copyright © 2021 Ventana Systems, Inc. Ventana is a registered trademark and a registered service mark of Ventana Systems, Inc.

Unimodality, Smoothness

• If not, the confidence bounds can be misleading



Alternate Approach to Estimation Markov Chain Monte Carlo (MCMC)


- Perform a random walk over the payoff surface, with moves chosen according to point likelihoods
- Stationary distribution of the Markov process reflects likelihood surface
- Problem: determining scale of proposed jumps
- Solution: Differential Evolution (run multiple Markov chains and recombine from population to propose jumps)

MCMC

VENTANA

36

Procedure

• Payoff

 We want the input to be (reasonably close to) a loglikelihood, so use the same kind of properly-weighted payoff we already developed

Control file

- We can use the same parameter set
- Change Optimizer to MCMC
- Possibly set other options

The Optimization Control File

- :OPTIMIZER=MCMC
- :MCLIMIT=5000 total number of runs
- :MCBURNIN=4000 runs to discard as warmup
- ... etc. See Help system for details.

List of parameters to optimize:

0<=Reference wolf growth rate<=1
0<=Reference elk per wolf<=1
0<=Relative initial elk<=2</pre>

(same as before)

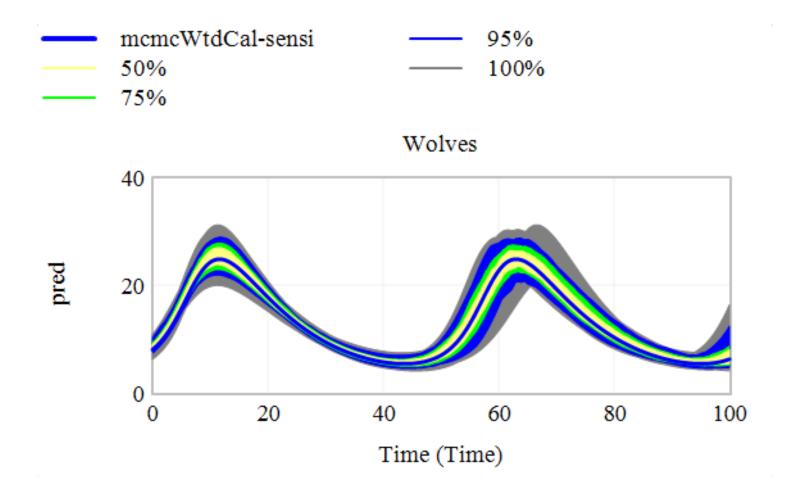
...

MCMC – the Output

• Three parts:

- _runname_MCMC_sample.tab: A sample of points representing the likelihood surface - the sample's statistics give you confidence bounds and represent the joint distribution of parameters.
- _runname_MCMC_points.tab: A diagnostic file containing more information on sample points, including those rejected
- _runname_MCMC_stats.tab: A diagnostic file containing convergence metrics

Using the Sample for Sensitivity Runs


• Plug the _MCMC_sample.tab file in as a Sensitivity simulation Simulation Control

VENTANA Vensim[®]

		le : sensi from m	icine.vsc	-	-							?
π	Sensitivity save list :	keyvars.lst								▶		?
stant nges	🞯 Reset											
	Sensitivity setup											
ata	Filename											
	sensi from mcmo	c.vsc								E 7		1
itivity	Settings											
6	Method Fi	ile 🔶			∨ File 🤇		mcmcV	/tdCal_MCM	C_sample.ta	b		7 aje
imize	# Simulations 2	00			# Grid e	ntries						
u	Noise seed 12	234				Г	Displa	y warnings				
14 I	Noise seed							, mannings				
р СМС						_		y manings				
	Active parameters Right click on a pa							,				
×	Active parameters Right click on a pa The sketch is 'live',		nighlighted o	onstants to	add them to th		- •	, wannings				
CMC	Active parameters Right click on a pa	arameter to edit , double click any h	nighlighted c	onstants to	add them to the Distribution	e list bel	ow.	Arg:3	Arg:4	Arg:5	Ai	·g:6
×	Active parameters Right click on a pa The sketch is 'live',	arameter to edit , double click any h	nighlighted c	onstants to		e list bel	ow.		Arg:4	Arg:5	Ai	·g:6
SMC	Active parameters Right click on a pa The sketch is 'live',	arameter to edit , double click any h	nighlighted c	onstants to		e list bel	ow.		Arg:4	Arg:5	A1	g:6
CMC	Active parameters Right click on a pa The sketch is 'live',	arameter to edit , double click any h	nighlighted c	onstants to		e list bel	ow.		Arg:4	Arg:5	Ar	·g:6
Simulate	Active parameters Right click on a pa The sketch is 'live',	arameter to edit , double click any h	nighlighted c	onstants to		e list bel	ow.		Arg:4	Arg:5	Ar	'g:б

Copyright © 2021 Ventana Systems, Inc. Ventana is a registered trademark and a registered service mark of Ventana Systems, Inc.

Using the Sample for Sensitivity Runs

Bayesian System Dynamics

Bayes Rule: P(A|B) = P(B|A)*P(A)/P(B)

```
Posterior
P(Params | Data)
= P(Data | Params) * P(Params) / P(Data)
Likelihood Prior Ignore
```

Implementation: combine calibration optimization or MCMC with priors that capture the state of knowledge about parameters.

Priors

• No priors = uniform priors

- This is essentially what we've been doing so far
- It's not always a good choice, *but* if you have lots of data, it probably doesn't matter.

• Non-informative or Maximum Entropy priors

- Contribute as little information as possible, i.e. assume maximum ignorance a priori
- For a scale parameter like a time constant, this is
 -LN(param) for positive parameters

• Informative priors

VENTANA

 If you – or experts or literature – have some opinion about a parameter, you can use a subjective probability distribution to characterize that

Example

• Suppose we think from other information that wolves live for about 7 years

The life spans of wild wolves vary dramatically. Although the average lifespan is **between 6 and 8 years**, many will die sooner, and some can reach 13. Wolves in captivity can live up to 17 years. Apr 13, 2012

https://www.pbs.org > wnet > river-of-no-return-gray-wol... River of No Return | Gray Wolf Facts | Nature - PBS

• We could capture this in the model with a prior on the wolf mortality rate

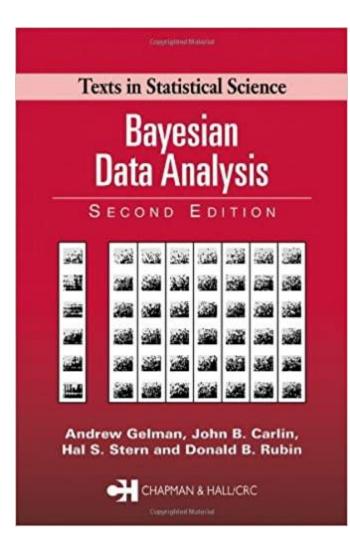
Likelihood for Priors

• If our belief is Normal (Gaussian):

• Likelihood =
$$\frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(param-prior)^2}{\sigma}^2/2}$$

- For an MCMC log likelihood, we only need the last term
- σ represents our belief about the plausible variation in the prior

Other Choices


- Noninformative scale parameter
 - -LN(parameter)

Interval variables

- Noninformative: Haldane or Jeffreys
- Informative: Beta
- Subjective

VENTANA

- Draw something in a lookup

Lifespan Prior

- In the first order model, Lifespan = 1/Wolf Mortality Rate
 - In the data generator, mortality rate = .08/year = 12.5 year lifespan, so there will be some conflict between our prior and the "truth"
- We could use the Normal (Gaussian) distribution to express our prior, something like:
 - Wolf Mortality Prior
 - = -1/2*{(1/Wolf Mortality Rate Wolf Lifespan Belief)
 - / Wolf Mortality Confidence}^2
 - "Wolf Mortality Confidence" is the standard deviation, in years, expressing our belief about how widely lifespan might vary
- Normality probably isn't the optimal choice, because it admits negative values; instead use Lognormal:
 - Wolf Mortality Prior
 - = -1/2*{LN(Wolf Mortality Rate*Wolf Lifespan Belief)
 - / Wolf Mortality Confidence}^2
 - "Wolf Mortality Confidence" is the standard deviation of our belief, expressed as a fraction of the central value

My Typical Playbook

- Build/refine structure
- Load data
- Create an interface view with model-data comparisons
- Do some hand calibration to see what parameters are interesting
- Do a quick & dirty calibration
 - Weight payoff with log transform and wild guesses at fractional errors
- Evaluate fit, work with model more, ponder what is really problematic or uncertain
- Design policies
- Test policies deterministically

Do policy experiments with sensitivity

48

- Develop a more carefully weighted payoff, consider Kalman filtering, priors
- Do MCMC to generate a confidence sample
- Do sensitivity runs based on the sample

