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Agenda

e Introduction

o Synthetic data

 Naive calibration

e Maximum likelihood

e Markov Chain Monte Carlo (MCMC)
e Kalman filtering (briefly)
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Overview
e Lotka-Volterra Predator-Prey model

 Generate synthetic data, by adding:
— Measurement error to the stocks of elk and wolves
— Driving noise to the flows of births and mortality

o Estimate parameters of the model from the data, by
various methods

— Optionally, use mismatched structure (2" order data-
generating model, first order estimated model)
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Caveats

In order to get done, we're approaching this problem a bit
fast and loose. Be aware:

 There is structural uncertainty as well as parameter
uncertainty

o Statistics deserve deeper thought
— Weights
— Covariance
— Autocorrelation
— Distributional assumptions
— Measurement error & driving noise (Kalman filter)

e We should be testing for multiple optima with multistart
calibration runs

o Sample sizes for sensitivity and MCMC may be too small
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Other Pitfalls

o State dependent noise
e Sample size

 Data quality

e Autocorrelated errors
o Error covariance

e Measurement error

o State estimation

e Endogeneity
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Calibration

e Purposes

— Make better predictions or
measurements

— Reject models that can’t
replicate data (potentially a
weak test of quality)

— Learn about the model
— Learn about the data

— Provide face validity for
reviewers

e Closeness Measures
— Sum of squared errors & R?2
— Mean Absolute Deviation
— Mean Absolute Percent Error
— Log Likelihood

VENTANA

Process
— Assume the model structure
is right
o If possible, test alternatives!
— Simulate the model
o Measure the closeness

o Adjust the constants in the
model

o Iterate to improve
— After convergence, evaluate

the fit

o Decide if the model needs
revision

o Investigate puzzles in the
data



Model Tour
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Synthetic Data Generation

e Open the data-generating model

Mame " Status Date modified Type Size
ElkWolhves - estimate - kalman ] 72372027 202 PM File folder
ElkWolves - estimate - memec ] /2372021 206 PM File folder
ElkWolves - estimate - naive ] 773372027 .02 PM File folder
ElkWolves - estimate - start [ 2372027 203 PM File folder
EllkWolves - estimate - weighted @ 72372027 2:03 PM File folder
ElkWolves - generate _ e 12812021 TP File folder
ElkWolves - generate - 2o @ 772372027 205 PM File folder

e Run, and take a look at the "measured” variables (red
bOX) e

Predator-Prey

100 200
g %0 100 g
wa y
7 Welves w} 0 20 40 50 80 100
folf inore rate jolf decrease 1z Wi Y Time (Time)
—— [7] Wolves - NoisyData(pred) Elk : NoisyData(Prey)
Elk Wolves Predator-Prey Phase

200 100 100

| o] & B B z
=~ e 1 Ek o — £ 100 5 50 2 50
/wa ey ks
0 = 0 = 0
P o [} 50 100 9 50 100 0 100 200
Time (Time) Time (Time) Elk (Prey)
—— [ NoisyData —— [ NoisyData +sennes [4] NoisyData

Predators

o oy
pred

EstEk arving

Time (Time) Time (Time)
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Elkc : NoisyData(Prey)

increase rate : NoisyData(Prey/Time)
Iic Gecrease rate - NoisyData(Prey/Time)
Ik fractional growth 1

[ T S S

ate alpha : NoisyData(f
- Nlnins TV, i L

‘olves : NoisyData(pred)

folf increase rate : NoisyData(fraction Time)
olf mortality rate - NoisyData(fraction Time)

‘olf fractional growth rate : NoisyData(fraction|




Synthetic Data Generation

e Load “"NoisyData.cin” and run the model

Simulation Control

@ ~ Constants and lookups
R Changes files (hold CTRL to drag/drop to change the load order, double click to edit]

informaticn

MoisyData.cin
I -
Constant
changes

[ ] Load CIN files as double precision
n”@! [ | Overwrite GET ... COMNSTANTS equations

e Run again, but add “short” to the run name, and load
“Short.cin” to set FINAL TIME=40

Simulation Control Simulation Control

@ A | Run information @ # | Constants and lockups

Run Run Mame: | MoisyDataShortvdfx h Run Changes files (hold CTRL to drag/drop-

information informaticn

MoisyData.cin

ﬂ Comment ‘ﬁ Short.cin h

Constant Constant
changes Sawve list: changes

—_— P
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Synthetic Data Generation

e This gives you 2 datasets

— Short time series, used to estimate parameters; export and
re-import using a savelist to restrict the information to the
measured state only

— Long time series, for comparison of later estimates with

“truth”
Measured Wolves
40
II||I
g |ﬂ|I r,'l I|I lu'll]l |r|||
o | |f |
= 2{} h II{""\-I . ||I ||I|| |I
!I' i llll | II."". n
- "N
S
0
0 20 40 60 80 100
Time (Time)
—— NoisyDataShort —— NoisyData
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Naive Calibration

 Create a simple metric describing the distance of the
model from the data

e Minimize the distance

VENTANA vEnsi me
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Mechanics — What We Need

e Data
— A .vdf file, or
— Equations with GET DIRECT DATA, GET XLS DATA
— ODBC

e A Payoff specifying what data series to match, and how
to weight each one

e An Optimization Control file specifying
— which parameters to vary, and
— what methods to use

e The optimizer then hill climbs to find the parameters
that minimize the error between model and data

VENTANA vEnsi me
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Naive Calibration
What do we get?

e A run (.vdfx) with the best parameters

e An output file (.out) summarizing the parameters found

— Parameters can then be reused by loading the .out as a
Changes file (like .cin files)

e A Payoff Report (.rep) with diagnostics (optionally)

VENTANA vEnsi me
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Naive Calibration Setup

e Copy the data files you created from the data generator
model to the “start” model folder

« Calibration - PredatorPrey » ElkWolves - generate

i Mame

zrsonal)
5 | B elk wolf meas.lst
Ersona

B Elk-Wolves 1.mdl
Wentana 5 J MoisyDiata.cin

| | MoisyData.vdfx
ipbox

| | MoisyDataShort.vdfx
_] Short.cin
B wolf elk state,lst

¥

R

v | D
Status
ﬁ a
] B
ﬁ o
o T
] 5

¥
o g o
n.l?,-.'_ulf'

Search ElkWolves - generate

Date modified

3/7/2018 4:36 PM

82018 711 AM

358 AM

TF282021 539 PM

e Open the starting point model

Mare

ElkWaolves - estimnate - kalman

Elk\Waolves - estimate - mome
ElkWWaolves - estimate - naive

Elk\Waolves - estimate - start

G==o

Elk\Wolves - estirnate - weighted
ElkWolves - generate

ElkWolves - generate - 2o
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Status

000000

Date modified

7723

720271 2:06 PM

[ it

T3

20271 2:02 PM

J2021 2:02 PM
2027 %11 PM

/2021 2:03 PM

18/2021 7:32 PM

F2027 T30 P

Tf28f2027 39 PM
[/28/2021 T12FPM

[7/2018 4:34 PM

Type

File folder
File folder
File folder
File folder
File folder
File folder

File folder

Type

MASM Listing
Yencim maodel (M.,
CIM File

VDFX File

VDFX File

CIM File

MASM Listing

Size

| KB
11EB
| KB
50 KB
33 KB
| KB
| KB
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Naive Calibration Setup

e Do a "Base” run (uncalibrated)
e Load the data from NoisyData or NoisyDataShort
 Notice how the model doesn’t fit the data well

Measured Wolves
100
IIII_I’. o I.llf g, .\l\ I.lllr."_'\ \
= £ \ ! ! {
=i 30 "ll S / ; /
/ . / " /
/ b JI,.“ 3 s J.-"'
& F, \ s ;
;/\Af/-\“/\/\/x\“x-.______ L VL P
4] 20 40 &0 80 100
Time (Time)
—— [~] NoisyData —— [] Base
Measured Elk
200 F&)
I."Illl l"lII I."I.I I'|II I-'lll I'|III
[\ '.
.-'ll II|II llll
F oo/ 7)) -
\\ /‘[ X
."x_ "\__
':' \“"' H—hc\_f‘-\—/\"\"'ﬁ/ RY
4] ZCI 100
Tume (Time)
—— [~] NoisyData —— [] Base
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Naive Calibration Setup

e Change the runname ("NaiveCal.vdfx” or similar)
e Go to the Data tab
— Load comparison data (recommend the short version)

Simulation Control

@ ™ Data files (hold CTRL to drag/drop to change the load order)
Run NDiS_‘,."DEtEShEII"t."."dﬁ{ _

information

T

Constant
changes
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Naive Calibration Setup (Continued)

e Change the runname (“"NaiveCal.vdfx” or similar)
e Go to the Optimize pane

— Create a Payoff (.vpd)

— Create a Control file (.voc)

Simulation Control

@ ) Optimization

Run Payoff definition : MNaivevpd -« ————— - 0

information

Mote : If running optimization with Kalman active, the payoff definition
ﬂ defined here will be used.

Constant _
changes Optimization Contrel : | Simplewvoc P

@‘E [ ] Payoff report
@ Rezet

N
-1~

Sensitivity

2l
Dptimize

o Hit the Optimize button
\

> Simulate P> SyntheSim Game Sensitivi M Optimize | "5 MCMC Reality Check Save Changes Cancel W)
¥ ty B 3 ty q

VENTANA venSim® 18



Fl,_-j}.rg_':u r: I:j'-:_'"{j:_ﬂ fion

Payoff Definiion. Edit the filename to save changes to a different control file

Pay0ff ~ Filename:

(.Vpd) |UrweightedFit vpd Browse Save&s.. | Clear Settings

-~ Payoff Elements
Calibration:Normal: Always: None WolveslMeasured Wolves/1

Calibratiorn:Normal Always: None: ElkiMeasured Elk /1

Payoff Element

-~ Payolff type
+ Calibration " Policy

- Payolf details
Vanable Elk Sel
Compare to Measured Elk Sel
Weight 1 Sel

The weight should be positive for calibration. For policy optimizations use a positive number
when more is better and a negative number when less is better,

Transfarm None -
Distribution Normal -
'__'- Timing ‘qiwa}ug v

0K Cancel

VENTANA I




Calibration Payoff Types

Payoff Element X
~ Payoff type-
(¢ Calibration Type " Palicy
Payoff details
Varable Ek Model Variable Sel
Compare to MeasuredEk Data Variable (optional if data names matlch|)
Wweight 1 Scale or Weight (interpretation depends on distrHBUtilon)

The weight should be positive for calibration. For policy optimizations use a positive number
when more is better and a negative number when less is better.

Transform None ~| Log transform?

Distribution Normal 1 Error distribution assumption & for

Always v

gk cancel |

mat

VENTANA ve nSi m®
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The Payoff File (.vpd)

as text
*C
Keyword indicating type (calibration = *C, policy = *P,
etc.)

wolves |measured wolves/1
Model variable | data variable / weight or scale parameter

The weight can also be a variable.

Subscript ranges are OK, as long as they match.

VENTANA ve nSi m®
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Optimization Control File (.voc)

Method & Settings

Parameters & Bounds

VENTANA

Optimization Control

Filename

Optimization Control. Edit the filename to save changes to a different control file

Filename: }F’aran‘:e'ters YOG

Browse ” Save As... l EIearSettingsl

El p't-i'rﬁi.zer
Optimizer m Stochastic m Seed I—
Random type m Pass Limit |2— Tol kult |21—
Dutput Level On «| Frac Tol W
Trace off v| 4BS Tol ]
Vector Points |25— Scale ABS |1—
Max Iterations W Sensitivity 0Off v = |—
Max Sims I— Multiple Start Off ~ | HRestart I[]—
— Choose optimization parameters
e ¥ Qo " _ Delt S
D<=Relative initial elk<=2
O<=Relative initial wolves<=2 Add Constant...
D<=Elk fractional growth rate alpha<=1
0<=Wolf mortality rate<=1 i
1 | - | = |
Model value of constant | _:__l = I
oK Cancel ‘
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The Optimization Control File
as text

:OPTIMIZER=Powell
:SENSITIVITY=0ff

:MULTIPLE START=0ff
<bla bla bla — algorithm control settings>

List of parameters to optimize:
O<=Reference wolf growth rate<=1l

O<=Reference elk per wolf<=1l
O<=Relative initial elk<=2

Min <= Variable Name = Initial Guess <= Max
Subscript ranges are OK. Initial Guess is often omitted.

VENTANA venSim® 23



Optimize

Sample results are in

Elk\Walves - estimate - naive

- Measured Wolves

e The model now fits the &
data (hopefully) _ V m "

o It fits in the future, after ) ﬂ WWWW "“\f WM%\/\V
the short data runs out (we =
probably made this too e Tm_‘“:m =
ea sy) . Measured Elk

: 2w/ ™ AN ,\

e Verify: use the Runs ) \\ P! 7
Compare tool to see if the 0 = \bxwwﬂ/
parameters match the| Time (Tme)

- NoisyData vdfx NatveCal vdfx — [/ NaiveCal
synthetic data model | 0.22226253
0.2 0
0.2 0
0.16 0.16122551
0.18000001 0.16827042
1.08 1.1602107
0.94999999 096516252

VENTANA insi me
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Variations

e Try again with ...
— an even shorter input data series
— more noise in the generator
— the 2nd order model data
— a longer forecast horizon

VENTANA vEnsi me
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Advanced Calibration

e Weighting Payoff Elements
 Kalman Filtering
e Markov Chain Monte Carlo

e Sensitivity

-
e @nsim®



Less-Naive Calibration

e Weight (model-data) comparisons
Motivation

e To recognize varying scale and quality
— At different times (bigger data -> bigger error)

— Of different measurements (#elk > #wolves, or wolf error >
elk error)

 For computation of confidence bounds

— A properly-weighted likelihood has a known distribution and
is compatible with MCMC

 In many cases, we can estimate the weights

-
e @nsim®



Example — Lots of elk, any wolves?




Maximum Likelihood

e Choose the value of parameters that maximizes the
likelihood of observing the data given the model

e This is called a Maximum Likelihood Estimator (MLE)

e Suppose there is more than one observation

— Then the likelihood is the product of the individual
likelihoods for each data point

— Working with log likelihood is easier, because In() converts
the product to a sum

e Likelihood expresses the probability of getting the data
observed from your model, not the chance that the
model is right

-
e @nsim®



Likelihood Surface
Gaussian errors

model—data.?
e /
a 2

e Likelihood = e

oV2T
e This is the PDF of the Gaussian (Normal) distribution

e 0O represents the standard error associated with a data
point, corresponding with the weight assigned in
Vensim (or its inverse)

[ |
venans - \f@NSIM®



Log-Likelihood
Gaussian errors

model—data.?
e /
a 2

e Likelihood = e

oV2T

e Log(Likelihood) =
— LN(o) - the bigger the g, the lower the likelihood, as it’s
spread thinner

— LN(v/2m) - this is a constant we can ignore

(model—data)z
= d / 2 - the weighted sum of squares, as in the

naive method, but for the factor /2

wn @nsim®



Log Likelihood
Gaussian errors

e Likelihoods combine multiplicatively, i.e. Likelihood(A
and B) = Likelihood(A)*Likelihood(B)

e Log likelihoods therefore sum, LN(Likelihood(A and B))
= LN(Likelihood(A)) + LN(Likelihood(B))

model—-data

o ( )2 is (—)? so if we've guessed right about o,

we expect this to have magnitude ~1.

 For multiple data points, we expect the weighted sum of
squares to have magnitude of the number of data
points, and have a Chi-squared distribution.

e Therefore a properly-weighted payoff should have a
magnitude of N or N/2 (depending on the method
choice)

error

-
e @nsim®



Adding data shrinks the likelihood peak

04

0.3

One Point 02

0.1

0

-5 -4 -3 -2 -1 0 1 2 3

0.0002
0.00015
Several Points
5e-005

0
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Error Distribution Assumptions

e N - Normal (simplest — used first for naive estimate)
— Payoff is the sum of (model-data)?*weight
— Weight = 1/(standard error of measurement)
— Proportional to 2*log likelihood
— You can't estimate the weight as a parameter
e G — Gaussian (often best choice)
— Sum of ((model-data)/StdDev)2/2 - LN(StdDev)

— This is a log likelihood (up to a constant multiplier) and can
be used to estimate the StdDev

e K- Kalman

— Same as Gaussian, but specified with Variance instead of
StdDev (primarily for use with the Kalman filter)

VENTANA veHSim® 10



Error Distribution Assumptions 2

e R —Robust
— Sum of ABS((model-data) /AbsErr) - LN(AbsErr)

— AbsErr scale parameter is a median absolute deviation rather
than standard deviation

— This is a log likelihood (up to a constant multiplier) and can
be used to estimate the AbsErr

— Not as efficient as Gaussian, but resistant to contaminated
data

e (Others — Robust/Huber, Poisson, etc.)

* For most purposes (not COVID!), use Normal, Gaussian,
Kalman or Robust

e Normal, Gaussian, Kalman differ only in interpretation of
the weight

VENTANA veHSim® 11



How do you determine ¢?

e Guess:
— “plus or minus x%"

— Standard deviation of the data (if stationary)
o Iterate:

— Run the model

— Look at the payoff or the residuals

— Adjust the error toward what you observe
e Estimate:

— Include the error or weight as an optimization control
parameter

— Requires extra terms in the payoff

— Likelihood e_(

[ |
venans - \f@NSIM®

model—data.?
7/
2
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Scale Variation

Measured Wolves

120
100

80 /\ \

1/

pred
8}
Lo ]

(.
o IS

probably
kbigger here

Y
N | v /\'m\f\\ f/ \'\/*-.\'
N S~ [ vﬂ\f \\ A
U AN v T
; " 40 680 80 100
Time (Time)
—— NoisyDataZ2o

VENTANA
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Response to Scale Variation

e Log-transform the data

e Then o represents the fractional error, rather than the
absolute error

e This doesn’t work if the data includes 0, but there are
other quasi-log transformations that could be used

e It also doesn’t work for data with both negative and
positive values, for which an absolute error makes more
sense

-
e @nsim®
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There’s an option for that ...
Policy Payoff Types

Payoff Element

Fayoff tupe

(@) Calibration () Palicy

Payoff details

Yariable Wolves Sel
Compare to Meazured Wolves Sel

StdDey E st Waolf rneasurement S0 frac h Sel

The weight zhould be pozitive for calibration. For policy optimizations uze a positive number
when more iz better and a negative number when less 1z better.

Transfarm Log ol “
Diztribution G aussian hd h
Timing Always

Ok Cancel

15



Weighted Calibration Setup

ElkWolves - estimate - weighted

e Go to the Advanced tab

— Load comparison data (recommend NoisyDataShort.cin)

— Create a Payoff (.vpd) — different weighting
— Create a Control file (.voc) — adds error terms
e Hit the Optimize button

Simulation Control

2 Optimization

Payoff definition : |LogWeightedFit.\rpd h | B M
MNote : If running optimization with Kalman active, the payoff definition
defined here will be used.
Optimization Control : |Parameters+SD.\roc | Er M
] Payoff report
e
Check
-
this box
B> Simulate | D> SyntheSim | Hf Game | ¥ Sensitivity i Optimize 2 MCMC | |Ci Reality Check | |[B) Save Changes | | Cancel

&

e @nsim®
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- L [T
] |}

Payaff Definition.  Edit the filename to zave changes to a different cantral file

Pa y0ff Filerarne:

( .vpd ) Logi/eightedFit. vpd Browse Save Az Clear Settings

FPapoff Elements

Calibration: G aussian:Alwapz: Log i olveslMeasured Wolves/E st \Wiolf measurement 50 frac

Calibration: G auzzian:dlways: Log:E kiMeazured Ell/E =t Elk meazurement 50 frac

Fayoff type
(@) Calibration () Palicy

Paypoff details

W ariable Wiolves

Compare to Meazured Wolves

StdD ey EstWolf reasurement S0 frac h

The weight zhould be pozitive for calibration. For palicy optimizations use a positive number
when more iz better and a negative number when lezs 1z better.

Transfarm Log ol h
- Distributi ' ol
; istribution Gauszian h
| | Timing Always
Ok Cancel

VENTANA

Sel
Sel
Sel
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Optimization Control File (.voc)

Method & Settings
(no change)

Parameters & Bounds
(adds error terms)

VENTANA

Filename

Optimization Contral. Edit the filename to zave changes to a different contral file

Filenarne:  Farameters+500voc

Optimizer

[ ptimizer FPowell w | Stochastic

R andom type Default w | Pazz Limit
Cutput Lewvel On w | Frac Tol
Trace 0ff w | ABS Tal
Vector Points Scale ABS
bl ax |terations Sengitivity

b aw Simz I:I Fultiple Start

Choose aptimization parameters

0<=Felative initial waolves:=2

Browse Clear Settings

0.0003
1
1

] Don't overwite GET. %LS
[ ] Create CIM

PapaffYfal ~ | =
FRandom +  HRestart III

Optimization Control

A
0<=Elk fractional growth rate alpha<=1 Delete Selected
0<=E st "w'olf meazurement 50 fracs=1 &dd Conztant...

"
| |<=| =L J«L ]

todel value of constant

Ok,

Cancel

18




Payoff Report

e Open the _runname_.rep file (a text editor is OK, but
Excel is better for viewing)

e Contents, for each data series:
— Contribution to payoff
— Source of data, # of points
— R™2
— Durbin Watson & Autocorrelation
— Theil statistics

o MSE = mean squared error, Um = unequal means, Us =
unequal variance, Uc = unequal covariance

— MAE, MAPE, MAEoM

-
e @nsim®
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Addressing Pitfalls — Kalman filtering

o State dependent noise
e Sample size

e Data i
utocorrelated erro
Error covariance
Measurement error
State estimation
ndogeneity

-
e @nsim®
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The General Problem

o If the state of the model has drifted away from the state
of the world, the model’s incremental responses are
likely to be wrong

o Ordinary Least Squares on first differences essentially
assumes that the data is always right

e Ordinary simulations assume that the model is always
right

e Ideal: blend the apparent state in the data with the
model’s estimate of system state (which includes
information from prior data)

VENTANA veHSim® 21



Example: GPS mapping

e The observer has six states:
— Position X, Y, Z (lat, lon, altitude)
— Velocity dX, dY, dZ

e The device takes intermittent noisy measurements of
position only

e A simple approach to noise is to smooth successive
position estimates, but that introduces a lag — we can do
better with a model

e From physics: Position = Integral(Velocity)

e Strategy:
— Maintain estimates of position and velocity states
— Integrate velocity to predict position changes
— Update towards the measurements as they arrive

-
e @nsim®
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' State

Kalman Filtering

Update state
towards data

Time

23



How far to update?

e Consider:
— How reliable is the data?
— How reliable is the model up to that point?

e Bayesian update (assuming Gaussian errors):

— New state = variance-weighted combination of model and
data = (Model/Var, 4o + Data/Varg..)/(1/Var oqet1/Varg.)

— Update variance similarly

o Complications
— Need to consider covariance (track Nyies”)
— Data might not measure states directly (need linear algebra)
— Non-Gaussian errors & outliers

-
e @nsim®
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Kalman Filtering

Good model,
State bad data

Model

Bad model,
_— good data

O Data

v

Time

25



NNNNNNN

Is the forecast in the
confidence bounds?

26



Why Confidence Bounds?
Perspectives

e Statistical
— Is an effect significantly different from zero?

e Practical

— What does uncertainty imply for policy?
— What data might narrow the bounds?

-
e @nsim®
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Several Paths to Confidence Bounds

e Old way
— Optimize to find the best fit to data
— Explore the payoff surface around the maximum

e New ways

— Bootstrapping (draw samples from the data)
— Markov Chain Monte Carlo (MCMC)

-
e @nsim®
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Parameter B

Multidimensional Likelihood

Bad
Bad

Bad
Bad

Parameter A
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Confidence Bounds & Likelihood

model—data.?
et /
2

e

Gaussian Likelihood =

oV2Tt

(model—data)z
Log Likelihood &% —lno — o /2 (leaving out invariant terms)

A weighted log-likelihood calibration payoff is a sum of
squares; 2*Log(likelihood/best likelihood) is distributed
Chi-squared with one degree of freedom

The expected value is the number of data points

Varying the payoff by the ChiSq critical value at 95%
yields a 95% confidence bound

— If your payoff uses the “"Normal” distribution setting, 3.84
— If you use “Gaussian” (preferred), 1.92 (=3.84/2)
— (Difference is due to presence or absence of the /2 factor)

-
e @nsim®
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Standard Vensim payoff value sensitivity

o Test the payoff surface in the direction of each
parameter independently

A

Parameter B

. Parameter A
VENTANA vens.m® 31



Misses off-axis ellipsoids!
A

Parameter B

Parameter A

 Even harder if the likelihood surface is shaped like a banana,
or a snake, or a bag of 10-dimensional jellybeans...

VENTANA veHSim® 32



Unimodality, Smoothness

e If not, the confidence bounds can be misleading

Graph for payoff

-10

-15

-20

20 26 32 38 44 50 56 62 68 74 80
Time (Month)

payoff : Current

-
e @nsim®
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Alternate Approach to Estimation
Markov Chain Monte Carlo (MCMC)

e Perform a random walk over the payoff surface, with
moves chosen according to point likelihoods

o Stationary distribution of the Markov process reflects
likelihood surface

 Problem: determining scale of proposed jumps

e Solution: Differential Evolution (run multiple Markov
chains and recombine from population to propose
jumps)

-
e @nsim®
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Parameter B

MCMC

Parameter A
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MCMC

Parameter B

Parameter A

VENTANA 36
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Procedure

e Payoff

— We want the input to be (reasonably close to) a log-
likelihood, so use the same kind of properly-weighted payoff
we already developed

o Control file
— We can use the same parameter set

— Change Optimizer to MCMC
— Possibly set other options

-
e @nsim®
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The Optimization Control File

:OPTIMIZER=MCMC
:MCLIMIT=5000 total number of runs

:MCBURNIN=4000 runs to discard as warmup
... etc. See Help system for details.

List of parameters to optimize:
O<=Reference wolf growth rate<=1

O<=Reference elk per wolf<=1
O<=Relative initial elk<=2

(same as before)

-
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MCMC - the Output

e Three parts:

— _runname_MCMC_sample.tab: A sample of points
representing the likelihood surface - the sample’s statistics
give you confidence bounds and represent the joint
distribution of parameters.

— _runname_MCMC_points.tab: A diagnostic file containing
more information on sample points, including those rejected

— _runname_MCMC_stats.tab: A diagnostic file containing
convergence metrics

]
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Using the Sample for Sensitivity Runs

 Plug the _MCMC_sample.tab file in as a Sensitivity
simulation

hortvdf:
@ ~ Sensitivity
Run . ) -
Sensitivity control file: | sensi from mecmcovsc h | =IBIr's
information £l | | L4 e
‘H' Sensitivity save list : | keyvars.lst | [ M e
Constant
Reset
changes @
o
Sensitivity setup b4
Data i
Filename
ul] zensi from momevsc | Er B @ o
[
Sensitivi
ensitivity i
4 Method Eile _ B e * memcWtdCal_ MCMC_sample.tab | de| @
Optimize 200
o3n 1234 [] Display warnings
S
MCMC Active parameters
v
< > Right click on a parameter to edit
The sketch is 'live’, double click any highlighted constants to add them to the list below.
B> Simulate | [
Enabled |Parameter Distribution |Min |Max |--—Arg:3--— |—--ﬂrg:4—-- |—-—Arg:5——— |--—Arg:l3--— | TP
E=t Wolf 1
driving noise ae
varnance
aEStEk
ubll noise
\'E’[?;I'DE @
Ezt Elk
maasuretn'lenISD o
=5t Elk measurement
< Previous Mext » oK Cancel DI/
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Using the Sample for Sensitivity Runs

—— emeWtdCal-sensi — 050
509 — 10092
— 759
Wolves
40

pred

0 20 40 60 a0 100

Time (Time)
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Bayesian System Dynamics

« Bayes Rule: P(A|B) = P(B|A)*P(A)/P(B)

Posterior
P(Params | Data)
= P(Data | Params) * P(Params) / P(Data)
Likelihood Prior Ignore

Implementation: combine calibration optimization or
MCMC with priors that capture the state of knowledge
about parameters.

-
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Priors

e No priors = uniform priors
— This is essentially what we've been doing so far

— It's not always a good choice, *but* if you have lots of data,
it probably doesn’t matter.

 Non-informative or Maximum Entropy priors

— Contribute as little information as possible, i.e. assume
maximum ignorance a priori

— For a scale parameter like a time constant, this is
-LN(param) for positive parameters
e Informative priors

— If you — or experts or literature — have some opinion about a

parameter, you can use a subjective probability distribution
to characterize that
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Example

e Suppose we think from other information that wolves
live for about 7 years

The life spans of wild wolves vary dramatically. Although
the average lifespan is between 6 and 8 years, many
will die sooner, and some can reach 13. Wolves in
captivity can live up to 17 years. apr13, 2012

https://www.pbs.org » wnet » river-of-no-return-gray-wol

River of No Return | Gray Wolf Facts | Nature - PBS

e Wae could capture this in the model with a prior on the
wolf mortality rate

wn @nsim®
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Likelihood for Priors

If our belief is Normal (Gaussian):

param—prior.?2
| /2
oV2T

For an MCMC log likelihood, we only need the last term

o represents our belief about the plausible variation in
the prior

Likelihood =

G'D 9|E how long is a snake

QA E) Images [E News ¢ Shopping [ Videos i More

About 433,000,000 results (1,12 seconds)

“ Most snakes are fairly small animals, approximately 1 m (3.3 ft) in length.

-
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Other Choices

° Noninformative Scale _

parameter Texts in Statistical Science

— -LN(parameter) Da?: ﬁ;nséll?;lﬂs

SECOND EDITION

e Interval variables

— Noninformative: Haldane or
Jeffreys

— Informative: Beta

e Subjective

Andrew Gelman, John B. Carlin,

- DraW SOmethIng |n a |OO|(U|3 Hal S. Stern and Donald B. Rubin

é' CHAPMAN & HALL/CRC
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Lifespan Prior

e In the first order model,
Lifespan = 1/Wolf Mortality Rate

— In the data generator, mortality rate = .08/year = 12.5 year lifespan, so
there will be some conflict between our prior and the “truth”
e We could use the Normal (Gaussian) distribution to express our prior,
something like:

— Wolf Mortality Prior
= -1/2*{(1/Wolf Mortality Rate — Wolf Lifespan Belief)
/ Wolf Mortality Confidence}”2
— “Wolf Mortality Confidence” is the standard deviation, in years, expressing
our belief about how widely lifespan might vary
e Normality probably isn’t the optimal choice, because it admits
negative values; instead use Lognormal:
— Wolf Mortality Prior
= -1/2*{LN(Wolf Mortality Rate*Wolf Lifespan Belief)
/ Wolf Mortality Confidence}”2
— “Wolf Mortality Confidence” is the standard deviation of our belief,
expressed as a fraction of the central value

VENTANA veHSim® 47



My Typical Playbook

Build/refine structure €~

 /
Load data

Create an interface view with model-data comparisons
Do some hand calibration to see what parameters are interesting

\/

Do a quick & dirty calibration
« Weight payoff with log transform and
wild guesses at fractional errors

Evaluate fit, work with model more, v
ponder what is really problematic or « Design policies
uncertain  Test policies deterministically

|

Develop a more carefully weighted payoff,
consider Kalman filtering, priors

Do MCMC to generate a confidence sample
Do sensitivity runs based on the sample v

™= . Do policy experiments with sensitivity
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