-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun_quadriflow.py
108 lines (85 loc) · 3.63 KB
/
run_quadriflow.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
# Runs ManifoldPlus on ShapeNet meshes.
import os
import json
import logging
import argparse
import psutil
import subprocess
import concurrent
import time
from deep_sdf import metrics, utils
import trimesh
import pandas as pd
def run_manifold(quadriflow_exec_path: str, input_obj_path: str, output_obj_path: str, debug=False):
start_time = time.time()
if os.path.exists(output_obj_path):
return
cmd = f"{quadriflow_exec_path} -i {input_obj_path} -o {output_obj_path}"
logging.info(f"Running cmd: {cmd}")
try:
p = subprocess.Popen(cmd, shell=True, stdout=subprocess.DEVNULL)#stdout=subprocess.STDOUT if debug else subprocess.DEVNULL)
p.wait()
except KeyboardInterrupt:
p.terminate()
if not os.path.exists(output_obj_path):
logging.debug(f"[run_quadriflow] Failure.")
logging.debug(f"[run_quadriflow] Took {time.time() - start_time:.01f} seconds.")
if __name__ == "__main__":
output_dir = "data/quadriflow_meshes" # This needs to be changed to where you want your data to be extracted to!
output_dir = "../../shared/deepsdfcomp/data/quadriflow_meshes"
shapenet_dir = "/mnt/hdd/ShapeNetCore.v2"
split_path = "examples/splits/sv2_planes_test.json"
quadriflow_executable = "../QuadriFlow/build/quadriflow"
os.makedirs(output_dir, exist_ok=True)
# Setup args and logging.
arg_parser = argparse.ArgumentParser(formatter_class=argparse.RawTextHelpFormatter)
arg_parser.add_argument(
"--n_jobs",
dest="n_jobs",
default=int(psutil.cpu_count() * 1/4),
help="Number of threads to run quadriflow on.",
)
utils.add_common_args(arg_parser)
args = arg_parser.parse_args()
utils.configure_logging(args)
logging.info(f"Using {args.n_jobs} cores.")
# Prepare all input and output mesh files.
with open(split_path, "r") as f:
split = json.load(f)
dataset_name = list(split.keys())[0]
synset_id = list(split[dataset_name].keys())[0]
shape_ids = split[dataset_name][synset_id]
meshes_targets_and_specific_args = []
file_not_found_cnt = 0
for shape_id in shape_ids:
# Path is hardcoded to work with ShapeNetCore.v2
# input_obj_path = os.path.join(shapenet_dir, synset_id, shape_id, "models/model_normalized.obj")
input_obj_path = os.path.join("../../shared/deepsdfcomp/data/manifold_meshes", synset_id, shape_id + ".obj")
if not os.path.exists(input_obj_path):
file_not_found_cnt += 1
continue
meshes_targets_and_specific_args.append({
"input_obj_path": input_obj_path,
"output_obj_path": os.path.join(output_dir, synset_id, shape_id + ".obj"),
})
os.makedirs(os.path.join(output_dir, synset_id), exist_ok=True)
# Logging to terminal.
logging.info(f"Quadriflowing a total of {len(shape_ids)-file_not_found_cnt} shapes.")
if file_not_found_cnt:
logging.info(f"Could not find {file_not_found_cnt} out of {len(shape_ids)} shapes.")
# Starting separate jobs.
with concurrent.futures.ThreadPoolExecutor(
max_workers=int(args.n_jobs)
) as executor:
start_time = time.time()
# Results logging list that is shared among all threads.
shared_logs = []
for i, mtsa in enumerate(meshes_targets_and_specific_args):
executor.submit(
run_manifold,
quadriflow_executable,
mtsa["input_obj_path"],
mtsa["output_obj_path"],
debug=args.debug,
)
executor.shutdown()