diff --git a/src/main/java/org/jabref/logic/importer/fetcher/AstrophysicsDataSystem.java b/src/main/java/org/jabref/logic/importer/fetcher/AstrophysicsDataSystem.java index fcf2750dd79..b1523a495a7 100644 --- a/src/main/java/org/jabref/logic/importer/fetcher/AstrophysicsDataSystem.java +++ b/src/main/java/org/jabref/logic/importer/fetcher/AstrophysicsDataSystem.java @@ -148,6 +148,9 @@ public void doPostCleanup(BibEntry entry) { new FieldFormatterCleanup(new UnknownField("adsnote"), new ClearFormatter()).cleanup(entry); // Move adsurl to url field new MoveFieldCleanup(new UnknownField("adsurl"), StandardField.URL).cleanup(entry); + entry.getField(StandardField.ABSTRACT) + .filter(abstractText -> abstractText.equals("Not Available

")) + .ifPresent(abstractText -> entry.clearField(StandardField.ABSTRACT)); // The fetcher adds some garbage (number of found entries etc before) entry.setCommentsBeforeEntry(""); } diff --git a/src/test/java/org/jabref/logic/importer/fetcher/AstrophysicsDataSystemTest.java b/src/test/java/org/jabref/logic/importer/fetcher/AstrophysicsDataSystemTest.java index 55038ea1033..08e70e03a2b 100644 --- a/src/test/java/org/jabref/logic/importer/fetcher/AstrophysicsDataSystemTest.java +++ b/src/test/java/org/jabref/logic/importer/fetcher/AstrophysicsDataSystemTest.java @@ -49,7 +49,6 @@ public void setUp() throws Exception { diezSliceTheoremEntry.setField(StandardField.URL, "https://ui.adsabs.harvard.edu/abs/2018arXiv181204698D"); diezSliceTheoremEntry.setField(StandardField.ABSTRACT, "We establish a general slice theorem for the action of a locally convex Lie group on a locally convex manifold, which generalizes the classical slice theorem of Palais to infinite dimensions. We discuss two important settings under which the assumptions of this theorem are fulfilled. First, using Gl{\\\"o}ckner's inverse function theorem, we show that the linear action of a compact Lie group on a Fr{\\'e}chet space admits a slice. Second, using the Nash--Moser theorem, we establish a slice theorem for the tame action of a tame Fr{\\'e}chet Lie group on a tame Fr{\\'e}chet manifold. For this purpose, we develop the concept of a graded Riemannian metric, which allows the construction of a path-length metric compatible with the manifold topology and of a local addition. Finally, generalizing a classical result in finite dimensions, we prove that the existence of a slice implies that the decomposition of the manifold into orbit types of the group action is a stratification."); - diezSliceTheoremEntry.setField(StandardField.ABSTRACT, "Not Available

"); famaeyMcGaughEntry = new BibEntry(); famaeyMcGaughEntry.setType(StandardEntryType.Article); @@ -97,7 +96,6 @@ public void setUp() throws Exception { xiongSunEntry.setField(StandardField.VOLUME, "45"); xiongSunEntry.setField(StandardField.YEAR, "2007"); xiongSunEntry.setField(StandardField.URL, "https://ui.adsabs.harvard.edu/abs/2007ITGRS..45..879X"); - xiongSunEntry.setField(StandardField.ABSTRACT, "Not Available

"); ingersollPollardEntry = new BibEntry(); ingersollPollardEntry.setType(StandardEntryType.Article); @@ -129,7 +127,6 @@ public void setUp() throws Exception { luceyPaulEntry.setField(StandardField.URL, "https://ui.adsabs.harvard.edu/abs/2000JGR...10520297L"); luceyPaulEntry.setField(StandardField.MONTH, "Jan"); luceyPaulEntry.setField(StandardField.NUMBER, "E8"); - luceyPaulEntry.setField(StandardField.ABSTRACT, "Not Available

"); } @Test