-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathcommunicator.py
261 lines (195 loc) · 8.26 KB
/
communicator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
import numpy as np
import time
import torch
from mpi4py import MPI
from compressors import get_top_k
from comm_helpers import flatten_tensors, unflatten_tensors
class Communicator(object):
""" Classs designed for communicating local models at workers """
def __init__(self, rank, size):
self.comm = MPI.COMM_WORLD
self.rank = rank
self.size = size
def communicate(self, model):
# stack all model parameters into one tensor list
self.tensor_list = list()
for param in model.parameters():
self.tensor_list.append(param.data)
# necessary preprocessing
self.prepare_comm_buffer()
# communication happens here
# record the communication time
comm_time = self.averaging()
# Update local models
self.reset_model()
return comm_time
def prepare_comm_buffer(self):
raise NotImplemented
def averaging(self):
raise NotImplemented
def reset_model(self):
raise NotImplemented
class centralizedCommunicator(Communicator):
""" Perform AllReduce at each iteration """
def __init__(self, rank, size):
super(centralizedCommunicator, self).__init__(rank, size)
def prepare_comm_buffer(self):
# faltten tensors
self.send_buffer = flatten_tensors(self.tensor_list).cpu()
def averaging(self):
self.comm.barrier()
tic = time.time()
# AllReduce
self.recv_buffer = self.comm.allreduce(self.send_buffer, op=MPI.SUM)
self.recv_buffer.div_(self.size)
self.comm.barrier()
toc = time.time()
return toc - tic
def reset_model(self):
# Reset local models to be the averaged model
for f, t in zip(unflatten_tensors(
self.recv_buffer.cuda(), self.tensor_list),
self.tensor_list):
t.set_(f)
class decenCommunicator(Communicator):
""" decentralized averaging according to a topology sequence """
def __init__(self, rank, size, topology):
super(decenCommunicator, self).__init__(rank, size)
self.topology = topology
self.neighbor_weight = topology.neighbor_weight
self.iter = 0
def prepare_comm_buffer(self):
# faltten tensors
self.send_buffer = flatten_tensors(self.tensor_list).cpu()
self.recv_buffer = torch.zeros_like(self.send_buffer)
def averaging(self, active_flags):
self.comm.barrier()
tic = time.time()
# decentralized averaging
degree = 0 # record the degree of each node
for graph_id, flag in enumerate(active_flags):
if flag == 0:
continue
else:
if self.topology.neighbors_info[graph_id][self.rank] != -1:
degree += 1
neighbor_rank = self.topology.neighbors_info[graph_id][self.rank]
# Receive neighbor's model: x_j
self.recv_tmp = self.comm.sendrecv(self.send_buffer, source=neighbor_rank, dest = neighbor_rank)
# Aggregate neighbors' models: alpha * sum_j x_j
self.recv_buffer.add_(self.neighbor_weight, self.recv_tmp)
# compute self weight according to degree
selfweight = 1 - degree * self.neighbor_weight
# compute weighted average: (1-d*alpha)x_i + alpha * sum_j x_j
self.recv_buffer.add_(selfweight, self.send_buffer)
self.comm.barrier()
toc = time.time()
return toc - tic
def reset_model(self):
# Reset local models to be the averaged model
for f, t in zip(unflatten_tensors(
self.recv_buffer.cuda(), self.tensor_list),
self.tensor_list):
t.set_(f)
def communicate(self, model):
# get activated topology at current iteration
active_flags = self.topology.active_flags[self.iter]
self.iter += 1
# if no subgraphs are activated,
# then directly start next iteration
if np.sum(active_flags) == 0:
return 0
# stack all model parameters into one tensor list
self.tensor_list = list()
for param in model.parameters():
self.tensor_list.append(param.data)
# necessary preprocess
self.prepare_comm_buffer()
# decentralized averaging according to activated topology
# record the communication time
comm_time = self.averaging(active_flags)
# update local models
self.reset_model()
return comm_time
class ChocoCommunicator(Communicator):
""" decentralized averaging using compressed gradients (top-k) """
def __init__(self, rank, size, topology, ratio, consensus_lr):
super(ChocoCommunicator, self).__init__(rank, size)
self.topology = topology
self.neighbor_weight = topology.neighbor_weight
self.iter = 0
self.initialized = False
self.consensus_lr = consensus_lr
self.ratio = ratio
def prepare_comm_buffer(self):
# flatten tensors
# If not initialized, then initialize x_hat and s
self.x = flatten_tensors(self.tensor_list).cpu()
if not self.initialized:
self.x_hat = torch.zeros_like(self.x)
self.s = torch.zeros_like(self.x)
self.initialized = True
tic = time.time()
# get compressed message
# here, we use top_k compressor on GPU
# one can define more in compressors.py
self.send_buffer = self.x - self.x_hat
values, indices = get_top_k(self.send_buffer.cuda(), self.ratio)
toc = time.time()
values, indices = values.cpu(), indices.cpu()
self.compressed = {"values":values, "indices":indices}
return toc - tic
def averaging(self, active_flags):
self.comm.barrier()
tic = time.time()
# decentralized averaging according to activated topology
degree = 0
for graph_id, flag in enumerate(active_flags):
if flag == 0:
continue
else:
if self.topology.neighbors_info[graph_id][self.rank] != -1:
degree += 1
neighbor_rank = self.topology.neighbors_info[graph_id][self.rank]
# Receive neighbor's message q_j
self.recv_tmp = self.comm.sendrecv(self.compressed, source=neighbor_rank, dest = neighbor_rank)
# Update aggregated model s += sum w_ij q_j
self.s[self.recv_tmp["indices"]] += self.neighbor_weight * self.recv_tmp["values"]
# Compute self weight
selfweight = 1 - degree * self.neighbor_weight
# Update aggregated model s += w_ii q_i
self.s[self.compressed["indices"]] += selfweight * self.compressed["values"]
# Update x_hat = x_hat + q_i
self.x_hat[self.compressed["indices"]] += self.compressed["values"]
# Update local model parameters: x = x + consensus_lr*(s-x_hat)
self.x.add_(self.consensus_lr, self.s).sub_(self.consensus_lr, self.x_hat)
self.comm.barrier()
toc = time.time()
return toc - tic
def reset_model(self):
# Reset local models to be the averaged model
for f, t in zip(unflatten_tensors(
self.x.cuda(), self.tensor_list),
self.tensor_list):
t.set_(f)
def communicate(self, model):
# get activated topology at current iteration
active_flags = self.topology.active_flags[self.iter]
self.iter += 1
# if no subgraphs are activated,
# then directly start next iteration
if np.sum(active_flags) == 0:
return 0
# stack all model parameters into one tensor list
self.tensor_list = list()
for param in model.parameters():
self.tensor_list.append(param.data)
# necessary preprocess
# there is an additional encoding time
encode_time = self.prepare_comm_buffer()
# decentralized averaging
# record the communication time
comm_time = self.averaging(active_flags)
# update local models
self.reset_model()
return encode_time + comm_time