-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain-gpu.py
172 lines (127 loc) · 5.57 KB
/
train-gpu.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Thu Sep 22 00:07:48 2022
@author: alitaghibakhshi
"""
import sys
sys.path.insert(1, 'utils/')
import matplotlib.pyplot as plt
import numpy as np
import torch
from pathlib import Path
import os
import os.path
import torch as T
import copy
import random
import scipy
from grids_gpu import *
from utils_gpu import *
import argparse
from mggnn_gpu import *
from lloyd_gunet import *
import time
manual_seeding = 34210
np.random.seed(manual_seeding)
random.seed(manual_seeding)
torch.manual_seed(manual_seeding)
# torch.use_deterministic_algorithms(True)
# torch.backends.cudnn.deterministic = True
# torch.backends.cudnn.benchmark = False
if torch.cuda.is_available():
device = torch.device('cuda')
else:
device = torch.device('cpu')
train_parser = argparse.ArgumentParser(description='Settings for training machine learning for ORAS')
train_parser.add_argument('--num-epoch', type=int, default=10, help='Number of training epochs')
train_parser.add_argument('--mini-batch-size', type=int, default=1, help='Coarsening ratio for aggregation')
train_parser.add_argument('--lr', type=float, default= 5e-4, help='Learning rate')
train_parser.add_argument('--TAGConv-k', type=int, default=2, help='TAGConv # of hops')
train_parser.add_argument('--dim', type=int, default=128, help='Dimension of TAGConv filter')
train_parser.add_argument('--data-set', type=str, default='Data/old_data', help='Directory of the training data')
train_parser.add_argument('--K', type=int, default=10, help='Number of iterations in the loss function')
train_parser.add_argument('--GNN', type=str, default='MG-GNN', help='MG-GNN or Graph-Unet')
train_parser.add_argument('--path', type=str, default='Models/old-model', help='MG-GNN or Graph-Unet')
train_parser.add_argument('--lvl', type=int, default=2, help='Number of Levels')
train_parser.add_argument('--layer', type=int, default=4, help='Number of Layers')
train_args = train_parser.parse_args()
if __name__ == "__main__":
path = train_args.path
if not os.path.exists(path):
os.makedirs(path)
list_grids = []
num_data = 1#sum((len(f) for _, _, f in os.walk(train_args.data_set)))-1
for i in range(num_data):
g = torch.load(train_args.data_set+"/grid"+str(i)+".pth")
list_grids.append(g)
print('Finished Uploading Training Data')
if train_args.GNN == 'MG-GNN':
model = MGGNN(lvl=train_args.lvl, dim_embed=128, num_layers=train_args.layer, K=train_args.TAGConv_k, ratio=0.2, lr=train_args.lr)
elif train_args.GNN == 'Graph-Unet':
model = lloyd_gunet(train_args.lvl, train_args.layer, 128, K = 2, ratio = 0.2, lr = train_args.lr)
else:
raise ValueError("Select GNN architecture between MG-GNN and Graph-Unet")
model.load_state_dict(torch.load('Models/model_epoch_best.pth'), strict=False)
model.to(device)
print('Number of parameters: ',sum(p.numel() for p in model.parameters()))
epoch_loss_list = []
all_indices = np.arange(num_data)
model.optimizer.zero_grad()
current_best_loss = 10**12
epoch_loss = 0
for epoch in range(train_args.num_epoch):
loss = 0
np.random.shuffle(all_indices)
mbs = train_args.mini_batch_size
print("Epoch = ", epoch)
print("-----------------")
for count in range(int(np.ceil((num_data)/mbs))):
batch_idxs = all_indices[count*mbs:min((count+1)*mbs, num_data)]
t1 = time.time()
for i in batch_idxs:
grid = list_grids[i]
grid.to(device)
output = model.forward(grid, train = True)
sump = 0
for p in model.parameters():
sump+=abs(p.flatten()).sum()
# print(np.random.rand())
# print(torch.rand(3))
# print(sump)
# print(abs(grid.A).toarray().flatten().sum())
# print(output[0].to_dense().flatten().sum())
# print(output[1].to_dense().flatten().sum())
# sys.exit()
u = torch.rand(grid.x.shape[0],100).double().to(device)
u = u/(((u**2).sum(0))**0.5).unsqueeze(0)
current_loss = stationary_max(grid, output, u = u, K = train_args.K, precond_type='ML_ORAS')
loss += current_loss
# if loss > 2.5 * mbs:
# print("Bad initializations")
# sys.exit()
loss.backward()
model.optimizer.step()
epoch_loss += loss.item()
t2 = time.time()
batch_time = t2-t1
print ("batch = ", count, "loss = ", loss.item(), "time = ", np.round(batch_time, 2))
model.optimizer.zero_grad()
loss = 0
epoch_loss_list.append(epoch_loss)
print('** Epoch loss is = ', epoch_loss)
if epoch_loss < current_best_loss:
torch.save(model.state_dict(), path+"/model_epoch_best.pth")
torch.save(model.state_dict(), path+"/model_epoch"+str(epoch)+".pth")
current_best_loss = epoch_loss
torch.save(epoch_loss_list, path+"/loss_list.pth")
epoch_loss = 0
print("-----------------")
torch.save(train_args, path+"/training_config.pth")
torch.save(epoch_loss_list, path+"/loss_list.pth")
# plt.plot(epoch_loss_list)
# plt.xlabel('Iteration')
# plt.ylabel('Loss')
# plt.yscale('log')
# plt.title('Loss vs. Iteration')
# plt.show()