-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy patharm_matrix_example_f32.c
210 lines (173 loc) · 6.55 KB
/
arm_matrix_example_f32.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
/* ----------------------------------------------------------------------
* Copyright (C) 2011 ARM Limited. All rights reserved.
*
* $Date: 15. December 2011
* $Revision: V2.0.0
*
* Project: Cortex-R4 DSP Library
* Title: arm_matrix_example_f32.c
*
* Description: Example code demonstrating least square fit to data
* using matrix functions
*
* Target Processor: Cortex-R4
*
* Version 2.0.0 2011/12/15
* Final release.
*
* ---------------------------------------------------------------------------- */
/**
* @ingroup groupExamples
*/
/**
* @defgroup MatrixExample Matrix Example
*
* \par Description:
* \par
* Demonstrates the use of Matrix Transpose, Matrix Muliplication, and Matrix Inverse
* functions to apply least squares fitting to input data. Least squares fitting is
* the procedure for finding the best-fitting curve that minimizes the sum of the
* squares of the offsets (least square error) from a given set of data.
*
* \par Algorithm:
* \par
* The linear combination of parameters considered is as follows:
* \par
* <code>A * X = B</code>, where \c X is the unknown value and can be estimated
* from \c A & \c B.
* \par
* The least squares estimate \c X is given by the following equation:
* \par
* <code>X = Inverse(A<sup>T</sup> * A) * A<sup>T</sup> * B</code>
*
* \par Block Diagram:
* \par
* \image html matrixExample.gif
*
* \par Variables Description:
* \par
* \li \c A_f32 input matrix in the linear combination equation
* \li \c B_f32 output matrix in the linear combination equation
* \li \c X_f32 unknown matrix estimated using \c A_f32 & \c B_f32 matrices
*
* \par Cortex-R DSP Software Library Functions Used:
* \par
* - arm_mat_init_f32()
* - arm_mat_trans_f32()
* - arm_mat_mult_f32()
* - arm_mat_inverse_f32()
*
* <b> Refer </b>
* \link arm_matrix_example_f32.c \endlink
*
*/
/** \example arm_matrix_example_f32.c
*/
#include "arm_math.h"
#include "math_helper.h"
#define SNR_THRESHOLD 90
/* --------------------------------------------------------------------------------
* Test input data(Cycles) taken from FIR Q15 module for differant cases of blockSize
* and tapSize
* --------------------------------------------------------------------------------- */
const float32_t B_f32[4] =
{
782.0, 7577.0, 470.0, 4505.0
};
/* --------------------------------------------------------------------------------
* Formula to fit is C1 + C2 * numTaps + C3 * blockSize + C4 * numTaps * blockSize
* -------------------------------------------------------------------------------- */
const float32_t A_f32[16] =
{
/* Const, numTaps, blockSize, numTaps*blockSize */
1.0, 32.0, 4.0, 128.0,
1.0, 32.0, 64.0, 2048.0,
1.0, 16.0, 4.0, 64.0,
1.0, 16.0, 64.0, 1024.0,
};
/* ----------------------------------------------------------------------
* Temporary buffers for storing intermediate values
* ------------------------------------------------------------------- */
/* Transpose of A Buffer */
float32_t AT_f32[16];
/* (Transpose of A * A) Buffer */
float32_t ATMA_f32[16];
/* Inverse(Transpose of A * A) Buffer */
float32_t ATMAI_f32[16];
/* Test Output Buffer */
float32_t X_f32[4];
/* ----------------------------------------------------------------------
* Reference ouput buffer C1, C2, C3 and C4 taken from MATLAB
* ------------------------------------------------------------------- */
const float32_t xRef_f32[4] = {73.0, 8.0, 21.25, 2.875};
float32_t snr;
/* ----------------------------------------------------------------------
* Max magnitude FFT Bin test
* ------------------------------------------------------------------- */
int32_t main(void)
{
arm_matrix_instance_f32 A; /* Matrix A Instance */
arm_matrix_instance_f32 AT; /* Matrix AT(A transpose) instance */
arm_matrix_instance_f32 ATMA; /* Matrix ATMA( AT multiply with A) instance */
arm_matrix_instance_f32 ATMAI; /* Matrix ATMAI(Inverse of ATMA) instance */
arm_matrix_instance_f32 B; /* Matrix B instance */
arm_matrix_instance_f32 X; /* Matrix X(Unknown Matrix) instance */
uint32_t srcRows, srcColumns; /* Temporary variables */
arm_status status;
/* Initialise A Matrix Instance with numRows, numCols and data array(A_f32) */
srcRows = 4;
srcColumns = 4;
arm_mat_init_f32(&A, srcRows, srcColumns, (float32_t *)A_f32);
/* Initialise Matrix Instance AT with numRows, numCols and data array(AT_f32) */
srcRows = 4;
srcColumns = 4;
arm_mat_init_f32(&AT, srcRows, srcColumns, AT_f32);
/* calculation of A transpose */
status = arm_mat_trans_f32(&A, &AT);
/* Initialise ATMA Matrix Instance with numRows, numCols and data array(ATMA_f32) */
srcRows = 4;
srcColumns = 4;
arm_mat_init_f32(&ATMA, srcRows, srcColumns, ATMA_f32);
/* calculation of AT Multiply with A */
status = arm_mat_mult_f32(&AT, &A, &ATMA);
/* Initialise ATMAI Matrix Instance with numRows, numCols and data array(ATMAI_f32) */
srcRows = 4;
srcColumns = 4;
arm_mat_init_f32(&ATMAI, srcRows, srcColumns, ATMAI_f32);
/* calculation of Inverse((Transpose(A) * A) */
status = arm_mat_inverse_f32(&ATMA, &ATMAI);
/* calculation of (Inverse((Transpose(A) * A)) * Transpose(A)) */
status = arm_mat_mult_f32(&ATMAI, &AT, &ATMA);
/* Initialise B Matrix Instance with numRows, numCols and data array(B_f32) */
srcRows = 4;
srcColumns = 1;
arm_mat_init_f32(&B, srcRows, srcColumns, (float32_t *)B_f32);
/* Initialise X Matrix Instance with numRows, numCols and data array(X_f32) */
srcRows = 4;
srcColumns = 1;
arm_mat_init_f32(&X, srcRows, srcColumns, X_f32);
/* calculation ((Inverse((Transpose(A) * A)) * Transpose(A)) * B) */
status = arm_mat_mult_f32(&ATMA, &B, &X);
/* Comparison of reference with test output */
snr = arm_snr_f32((float32_t *)xRef_f32, X_f32, 4);
/*------------------------------------------------------------------------------
* Initialise status depending on SNR calculations
*------------------------------------------------------------------------------*/
if( snr > SNR_THRESHOLD)
{
status = ARM_MATH_SUCCESS;
}
else
{
status = ARM_MATH_TEST_FAILURE;
}
/* ----------------------------------------------------------------------
** Loop here if the signals fail the PASS check.
** This denotes a test failure
** ------------------------------------------------------------------- */
if( status != ARM_MATH_SUCCESS)
{
while(1);
}
}
/** \endlink */