-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathnet_utils.py
65 lines (36 loc) · 1.86 KB
/
net_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
import torch
import torch.nn as nn
import numpy as np
from torch.autograd import Variable
'''
Function name : run_lstm
Parameters:
__________________
lstm : A pytorch lstm object
inp : Torch tensor of shape [batch_size, max_length, embedding dimension ]
max_length is the length of largest question in the batch
inp_length : Array containing length of each question in batch has size batch_size
'''
def run_lstm(lstm, inp , inp_length,hidden=None ):
sort_perm = np.argsort(inp_length)[::-1].copy() # a numpy array containing indices of inp in order of their correspondng length descending
sort_inp_len = inp_length[sort_perm] # input length in decreasing order
sort_perm_inv = np.argsort(sort_perm) # return inp to order in which received.
lstm_inp = nn.utils.rnn.pack_padded_sequence( inp[sort_perm] , sort_inp_len,batch_first=True )
if hidden is None:
hidden=None
else:
hidden = (hidden[0][:,sort_perm] , hidden[1][:,sort_perm]) # Permute the hidden state corresponding to sort_perm
output , ret_h = lstm(lstm_inp,hidden)
ret_output = nn.utils.rnn.pad_packed_sequence(output,batch_first=True)[0][sort_perm_inv]
ret_hidden = ( ret_h[0][:, sort_perm_inv] , ret_h[0][:, sort_perm_inv])
return ret_output,ret_hidden
def column_encode( lstm , col_inp_var, name_length ,col_length ):
col_hidden , col_out = run_lstm( lstm, col_inp_var, name_length )
name_out = col_hidden[ tuple(range(len(name_length))) , name_length-1 ]
ret = torch.FloatTensor( len(col_length) , max(col_length) , name_out.size()[1] ).zero_()
st = 0
for i ,cur_len in enumerate(col_length):
ret[i, :cur_len] = name_out.data[st: st+cur_len]
st += cur_len
ret_var = Variable(ret)
return ret_var,col_length