forked from LevinJ/SSD_tensorflow_VOC
-
Notifications
You must be signed in to change notification settings - Fork 5
/
evaluate_model.py
159 lines (113 loc) · 5.4 KB
/
evaluate_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
import tensorflow as tf
import matplotlib.pyplot as plt
import tensorflow.contrib.slim as slim
import numpy as np
import math
from preparedata import PrepareData
from nets.ssd import g_ssd_model
import tf_extended as tfe
import time
from postprocessingdata import g_post_processing_data
import argparse
class EvaluateModel(PrepareData):
def __init__(self):
PrepareData.__init__(self)
self.batch_size = 32
self.labels_offset = 0
self.eval_image_size = None
self.preprocessing_name = None
self.model_name = 'inception_v3'
self.num_preprocessing_threads = 4
self.checkpoint_path = None
self.eval_dir = None
return
def __setup_eval(self):
tf.logging.set_verbosity(tf.logging.INFO)
_ = slim.get_or_create_global_step()
if self.eval_during_training:
gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=0.01)
else:
gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=0.9)
if self.eval_train:
image, _, glabels,gbboxes,gdifficults, _, _, _ = self.get_voc_2007_train_data(is_training_data=False)
self.eval_dir = './logs/evals/train_data'
else:
image, _, glabels,gbboxes,gdifficults, _, _, _ = self.get_voc_2007_test_data()
self.eval_dir = './logs/evals/test_data'
#get model outputs
predictions, localisations, logits, end_points = g_ssd_model.get_model(image)
# print_mAP_07_op, print_mAP_12_op = g_post_processing_data.get_mAP_tf_current_batch(predictions, localisations, glabels, gbboxes, gdifficults)
names_to_updates = g_post_processing_data.get_mAP_tf_accumulative(predictions, localisations, glabels, gbboxes, gdifficults)
# print_filename_op = tf.Print(filename, [filename], "input images: ")
variables_to_restore = slim.get_variables_to_restore()
num_batches = math.ceil(self.dataset.num_samples / float(self.batch_size))
config = tf.ConfigProto(log_device_placement=False,
gpu_options=gpu_options)
if not self.eval_loop:
# Standard evaluation loop.
print("one time evaluate...")
if tf.gfile.IsDirectory(self.checkpoint_path):
checkpoint_file = tf.train.latest_checkpoint(self.checkpoint_path)
else:
checkpoint_file = self.checkpoint_path
tf.logging.info('Evaluating %s' % checkpoint_file)
start = time.time()
slim.evaluation.evaluate_once(
master='',
checkpoint_path=checkpoint_file,
logdir=self.eval_dir,
num_evals=num_batches,
eval_op=list(names_to_updates.values()) ,
session_config=config,
variables_to_restore=variables_to_restore)
# Log time spent.
elapsed = time.time()
elapsed = elapsed - start
print('Time spent : %.3f seconds.' % elapsed)
print('Time spent per BATCH: %.3f seconds.' % (elapsed / num_batches))
else:
print("evaluate during training...")
# Waiting loop.
slim.evaluation.evaluation_loop(
master='',
checkpoint_dir=self.checkpoint_path,
logdir=self.eval_dir,
num_evals=num_batches,
eval_op=list(names_to_updates.values()),
variables_to_restore=variables_to_restore,
eval_interval_secs=60*60*2,
session_config=config,
max_number_of_evaluations=np.inf,
timeout=None)
return
def parse_param(self):
parser = argparse.ArgumentParser()
parser.add_argument('-f', '--finetune', help='whether use checkpoints under finetune folder', action='store_true')
parser.add_argument('-s', '--simul', help='evaluate when training is onging', action='store_true')
parser.add_argument('-t', '--train', help='evaluate aginst train dataset', action='store_true')
parser.add_argument('-l', '--loop', help='evaluate checkpoints by loops', action='store_true')
parser.add_argument('-c', '--checkpoint', help='evaluate a specific checkpoint', default="")
args = parser.parse_args()
self.checkpoint_path = './logs/'
self.finetune = args.finetune
if args.finetune:
self.checkpoint_path = './logs/finetune/'
if args.checkpoint != "":
self.checkpoint_path = args.checkpoint
self.eval_during_training = args.simul
self.eval_train = args.train
self.eval_loop = args.loop
return
def run(self):
self.parse_param()
if self.eval_during_training:
self.batch_size = 16
#To evaluate while trainin going on
with tf.device('/device:CPU:0'):
self.__setup_eval()
else:
self.__setup_eval()
return
if __name__ == "__main__":
obj= EvaluateModel()
obj.run()