Skip to content

IlyaGusev/russ

Repository files navigation

Python library for word stress detection

Tests Status PyPI Version codecov

Install

pip install russ

or

git clone https://github.com/IlyaGusev/russ
cd russ
pip install -r requirements.txt
python setup.py

Usage

Colab: link

from russ.stress.predictor import StressPredictor

model = StressPredictor()
model.predict("корова")

>>> [3]

Dataset

  • Train/val/test split: link

Metrics

  • CPU, AMD EPYC 7282, batch size = 2048: 1495 μs for 1 word
  • GPU, 1x RTX 3090, batch size = 2048: 173 μs for 1 word
  • Test accuracy: 89.73%
  • All accuracy: 97.95%

Commands

download.sh

Script for downloading datasets:

  • ru_custom.txt: 885 words
  • zaliznyak.txt: 86839 lexemes
  • espeak.txt: 804909 words
  • ruwiktionary-20221201-pages-articles.xml: articles from ruwiktionary, update to a new dump

scripts/prepare_data.py

Preparing data for training

Argument Default Description
--wiktionary-dump-path None path to downloaded wiktionary dump
--espeak-dump-path None path to espeak dump
--custom-dict-path None path to file with custom words
--inflected-dict-path None path to downloaded file with lexemes
--inflected-sample-rate 0.3 part of inflected dict to use
--split-mode lexemes how to split into train, val and test files: "sort", "lexemes" or "shuffle"
--all-path data/all.txt path to output train file
--train-path data/train.txt path to output train file
--val-path data/val.txt path to output validation file
--test-path data/test.txt path to output test file
--val-part 0.05 part of validation file
--test-part 0.05 part of test file
--lower Fasle lowercase all words

About

Package for word stress detection

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published