-
Notifications
You must be signed in to change notification settings - Fork 2
/
trainer.py
129 lines (99 loc) · 4.26 KB
/
trainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
import sys
import logging
import copy
import torch
from utils import factory
from utils.data_manager import DataManager, FiveDsets_DataManager
from utils.toolkit import count_parameters
import os
import numpy as np
import wandb
def train(args):
seed_list = copy.deepcopy(args['seed'])
device = copy.deepcopy(args['device'])
res_finals, res_avgs = [], []
for run_id, seed in enumerate(seed_list):
args['seed'] = seed
args['run_id'] = run_id
args['device'] = device
res_final, res_avg = _train(args)
res_finals.append(res_final)
res_avgs.append(res_avg)
logging.info('final accs: {}'.format(res_finals))
logging.info('avg accs: {}'.format(res_avgs))
wandb.log({'Final Acc': res_finals})
wandb.log({'Avg Acc': res_avgs})
def _train(args):
os.makedirs("logs/{}_{}".format(args['model_name'], args['model_postfix']), exist_ok=True)
logfilename = 'logs/{}_{}/{}_{}_{}_{}_{}_{}_{}'.format(args['model_name'], args['model_postfix'], args['prefix'], args['seed'], args['model_name'], args['convnet_type'],
args['dataset'], args['init_cls'], args['increment'])
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s [%(filename)s] => %(message)s',
handlers=[
logging.FileHandler(filename=logfilename + '.log'),
logging.StreamHandler(sys.stdout)
]
)
_set_random()
_set_device(args)
print_args(args)
data_manager = DataManager(
args["dataset"],
args["shuffle"],
args["seed"],
args["init_cls"],
args["increment"]
)
model = factory.get_model(args['model_name'], args)
cnn_curve, nme_curve = {'top1': [], 'top5': []}, {'top1': [], 'top5': []}
for task in range(data_manager.nb_tasks):
logging.info('All params: {}'.format(count_parameters(model._network)))
logging.info('Trainable params: {}'.format(count_parameters(model._network, True)))
model.incremental_train(data_manager)
cnn_accy, nme_accy = model.eval_task()
model.after_task()
if nme_accy is not None:
logging.info('CNN: {}'.format(cnn_accy['grouped']))
logging.info('NME: {}'.format(nme_accy['grouped']))
cnn_curve['top1'].append(cnn_accy['top1'])
cnn_curve['top5'].append(cnn_accy['top5'])
nme_curve['top1'].append(nme_accy['top1'])
nme_curve['top5'].append(nme_accy['top5'])
logging.info('CNN top1 curve: {}'.format(cnn_curve['top1']))
logging.info('CNN top1 avg: {}'.format(np.array(cnn_curve['top1']).mean()))
if 'task_acc' in cnn_accy.keys():
logging.info('Task: {}'.format(cnn_accy['task_acc']))
logging.info('CNN top5 curve: {}'.format(cnn_curve['top5']))
logging.info('NME top1 curve: {}'.format(nme_curve['top1']))
logging.info('NME top5 curve: {}\n'.format(nme_curve['top5']))
wandb.log({'Top1 curve': np.array(cnn_curve['top1']).mean()})
else:
logging.info('No NME accuracy.')
logging.info('CNN: {}'.format(cnn_accy['grouped']))
cnn_curve['top1'].append(cnn_accy['top1'])
cnn_curve['top5'].append(cnn_accy['top5'])
logging.info('CNN top1 curve: {}'.format(cnn_curve['top1']))
logging.info('CNN top1 avg: {}'.format(np.array(cnn_curve['top1']).mean()))
logging.info('CNN top5 curve: {}\n'.format(cnn_curve['top5']))
wandb.log({'Top1 curve': np.array(cnn_curve['top1']).mean()})
return (cnn_curve['top1'][-1], np.array(cnn_curve['top1']).mean())
def _set_device(args):
device_type = args['device']
gpus = []
for device in device_type:
if device_type == -1:
device = torch.device('cpu')
else:
device = torch.device('cuda:{}'.format(device))
gpus.append(device)
args['device'] = gpus
def _set_random():
torch.manual_seed(1)
torch.cuda.manual_seed(1)
torch.cuda.manual_seed_all(1)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
def print_args(args):
for key, value in args.items():
logging.info('{}: {}'.format(key, value))