diff --git a/src/ITensorNetworks.jl b/src/ITensorNetworks.jl index 77b41650..777246eb 100644 --- a/src/ITensorNetworks.jl +++ b/src/ITensorNetworks.jl @@ -64,7 +64,6 @@ function iterate(::AbstractDataGraph) end include("observers.jl") -include("utils.jl") include("visualize.jl") include("graphs.jl") include("itensors.jl") @@ -94,6 +93,8 @@ include("boundarymps.jl") include("beliefpropagation.jl") include("contraction_tree_to_graph.jl") include("gauging.jl") +include("utils.jl") +include("tensornetworkoperators.jl") include(joinpath("ITensorsExt", "itensorutils.jl")) include(joinpath("Graphs", "abstractgraph.jl")) include(joinpath("Graphs", "abstractdatagraph.jl")) diff --git a/src/ITensorsExt/itensorutils.jl b/src/ITensorsExt/itensorutils.jl index 4abb9d45..855a0d7e 100644 --- a/src/ITensorsExt/itensorutils.jl +++ b/src/ITensorsExt/itensorutils.jl @@ -19,3 +19,32 @@ inv_diag(it::ITensor) = map_diag(inv, it) invsqrt_diag(it::ITensor) = map_diag(inv ∘ sqrt, it) pinv_diag(it::ITensor) = map_diag(pinv, it) pinvsqrt_diag(it::ITensor) = map_diag(pinv ∘ sqrt, it) + +"""Given a vector of ITensors, separate them into groups of commuting itensors (i.e. itensors in the same group do not share any common indices)""" +function group_commuting_itensors(its::Vector{ITensor}) + remaining_its = copy(its) + it_groups = Vector{ITensor}[] + + while !isempty(remaining_its) + cur_group = ITensor[] + cur_indices = Index[] + inds_to_remove = [] + for i in 1:length(remaining_its) + it = remaining_its[i] + it_inds = inds(it) + + if all([i ∉ cur_indices for i in it_inds]) + push!(cur_group, it) + push!(cur_indices, it_inds...) + push!(inds_to_remove, i) + end + end + remaining_its = ITensor[ + remaining_its[i] for + i in setdiff([i for i in 1:length(remaining_its)], inds_to_remove) + ] + push!(it_groups, cur_group) + end + + return it_groups +end diff --git a/src/abstractitensornetwork.jl b/src/abstractitensornetwork.jl index 087be654..cdd742d9 100644 --- a/src/abstractitensornetwork.jl +++ b/src/abstractitensornetwork.jl @@ -590,8 +590,10 @@ end function combine_linkinds(tn::AbstractITensorNetwork, combiners=linkinds_combiners(tn)) combined_tn = copy(tn) for e in edges(tn) - combined_tn[src(e)] = combined_tn[src(e)] * combiners[e] - combined_tn[dst(e)] = combined_tn[dst(e)] * combiners[reverse(e)] + if !isempty(linkinds(tn, e)) + combined_tn[src(e)] = combined_tn[src(e)] * combiners[e] + combined_tn[dst(e)] = combined_tn[dst(e)] * combiners[reverse(e)] + end end return combined_tn end diff --git a/src/apply.jl b/src/apply.jl index b4b1da76..908e21d1 100644 --- a/src/apply.jl +++ b/src/apply.jl @@ -1,14 +1,13 @@ function ITensors.apply( o::ITensor, ψ::AbstractITensorNetwork; - cutoff=nothing, - maxdim=nothing, normalize=false, ortho=false, envs=ITensor[], nfullupdatesweeps=10, print_fidelity_loss=true, envisposdef=false, + apply_kwargs..., ) ψ = copy(ψ) v⃗ = neighbor_vertices(ψ, o) @@ -55,13 +54,13 @@ function ITensors.apply( extended_envs, o; nfullupdatesweeps, - maxdim, print_fidelity_loss, envisposdef, + apply_kwargs..., ) else Rᵥ₁, Rᵥ₂ = factorize( - apply(o, Rᵥ₁ * Rᵥ₂), inds(Rᵥ₁); cutoff, maxdim, tags=ITensorNetworks.edge_tag(e) + apply(o, Rᵥ₁ * Rᵥ₂), inds(Rᵥ₁); tags=ITensorNetworks.edge_tag(e), apply_kwargs... ) end @@ -87,52 +86,134 @@ end function ITensors.apply( o⃗::Vector{ITensor}, ψ::AbstractITensorNetwork; - cutoff, - maxdim=typemax(Int), normalize=false, ortho=false, - kwargs..., + apply_kwargs..., ) o⃗ψ = ψ for oᵢ in o⃗ - o⃗ψ = apply(oᵢ, o⃗ψ; cutoff, maxdim, normalize, ortho) + o⃗ψ = apply(oᵢ, o⃗ψ; normalize, ortho, apply_kwargs...) end return o⃗ψ end function ITensors.apply( - o⃗::Scaled, - ψ::AbstractITensorNetwork; - cutoff, - maxdim, - normalize=false, - ortho=false, - kwargs..., + o⃗::Scaled, ψ::AbstractITensorNetwork; normalize=false, ortho=false, apply_kwargs... ) return maybe_real(Ops.coefficient(o⃗)) * - apply(Ops.argument(o⃗), ψ; cutoff, maxdim, normalize, ortho, kwargs...) + apply(Ops.argument(o⃗), ψ; cutoff, maxdim, normalize, ortho, apply_kwargs...) end function ITensors.apply( - o⃗::Prod, - ψ::AbstractITensorNetwork; - cutoff, - maxdim, - normalize=false, - ortho=false, - kwargs..., + o⃗::Prod, ψ::AbstractITensorNetwork; normalize=false, ortho=false, apply_kwargs... ) o⃗ψ = ψ for oᵢ in o⃗ - o⃗ψ = apply(oᵢ, o⃗ψ; cutoff, maxdim, normalize, ortho, kwargs...) + o⃗ψ = apply(oᵢ, o⃗ψ; normalize, ortho, apply_kwargs...) end return o⃗ψ end function ITensors.apply( - o::Op, ψ::AbstractITensorNetwork; cutoff, maxdim, normalize=false, ortho=false, kwargs... + o::Op, ψ::AbstractITensorNetwork; normalize=false, ortho=false, apply_kwargs... ) - return apply(ITensor(o, siteinds(ψ)), ψ; cutoff, maxdim, normalize, ortho, kwargs...) + return apply(ITensor(o, siteinds(ψ)), ψ; normalize, ortho, apply_kwargs...) +end + +_gate_vertices(o::ITensor, ψ) = neighbor_vertices(ψ, o) +_gate_vertices(o::AbstractEdge, ψ) = [src(o), dst(o)] + +function _contract_factorized_gate(o::ITensor, ψv1, ψv2) + G1, G2 = factorize(o, Index[commonind(ψv1, o), commonind(ψv1, o)']; cutoff=1e-16) + ψv1 = noprime(ψv1 * G1) + ψv2 = noprime(ψv2 * G2) + return ψv1, ψv2 +end + +function _contract_factorized_gate(o::AbstractEdge, ψv1, ψv2) + return ψv1, ψv2 +end + +#In the future we will try to unify this into apply() above but currently leave it mostly as a separate function +"""Apply() function for an ITN in the Vidal Gauge. Hence the bond tensors are required. +Gate does not necessarily need to be passed. Can supply an edge to do an identity update instead. Uses Simple Update procedure assuming gate is two-site""" +function ITensors.apply( + o::Union{ITensor,NamedEdge}, + ψ::AbstractITensorNetwork, + bond_tensors::DataGraph; + normalize=false, + apply_kwargs..., +) + ψ = copy(ψ) + bond_tensors = copy(bond_tensors) + v⃗ = _gate_vertices(o, ψ) + if length(v⃗) == 2 + e = NamedEdge(v⃗[1] => v⃗[2]) + ψv1, ψv2 = copy(ψ[src(e)]), copy(ψ[dst(e)]) + e_ind = commonind(ψv1, ψv2) + + for vn in neighbors(ψ, src(e)) + if (vn != dst(e)) + ψv1 = noprime(ψv1 * bond_tensors[vn => src(e)]) + end + end + + for vn in neighbors(ψ, dst(e)) + if (vn != src(e)) + ψv2 = noprime(ψv2 * bond_tensors[vn => dst(e)]) + end + end + + ψv1, ψv2 = _contract_factorized_gate(o, ψv1, ψv2) + + ψv2 = noprime(ψv2 * bond_tensors[e]) + + Qᵥ₁, Rᵥ₁ = factorize(ψv1, uniqueinds(ψv1, ψv2); cutoff=1e-16) + Qᵥ₂, Rᵥ₂ = factorize(ψv2, uniqueinds(ψv2, ψv1); cutoff=1e-16) + + theta = Rᵥ₁ * Rᵥ₂ + + U, S, V = ITensors.svd( + theta, + uniqueinds(Rᵥ₁, Rᵥ₂); + lefttags=ITensorNetworks.edge_tag(e), + righttags=ITensorNetworks.edge_tag(e), + apply_kwargs..., + ) + + ind_to_replace = commonind(V, S) + ind_to_replace_with = commonind(U, S) + replaceind!(S, ind_to_replace, ind_to_replace_with') + replaceind!(V, ind_to_replace, ind_to_replace_with) + + ψv1, bond_tensors[e], ψv2 = U * Qᵥ₁, S, V * Qᵥ₂ + + for vn in neighbors(ψ, src(e)) + if (vn != dst(e)) + ψv1 = noprime(ψv1 * inv_diag(bond_tensors[vn => src(e)])) + end + end + + for vn in neighbors(ψ, dst(e)) + if (vn != src(e)) + ψv2 = noprime(ψv2 * inv_diag(bond_tensors[vn => dst(e)])) + end + end + + if normalize + normalize!(ψv1) + normalize!(ψv2) + normalize!(bond_tensors[e]) + end + + ψ[src(e)], ψ[dst(e)] = ψv1, ψv2 + + return ψ, bond_tensors + + else + ψ = ITensors.apply(o, ψ; normalize) + return ψ, bond_tensors + end end ### Full Update Routines ### @@ -193,11 +274,13 @@ function optimise_p_q( envs::Vector{ITensor}, o::ITensor; nfullupdatesweeps=10, - maxdim=nothing, print_fidelity_loss=false, envisposdef=true, + apply_kwargs..., ) - p_cur, q_cur = factorize(apply(o, p * q), inds(p); maxdim, tags=tags(commonind(p, q))) + p_cur, q_cur = factorize( + apply(o, p * q), inds(p); tags=tags(commonind(p, q)), apply_kwargs... + ) fstart = print_fidelity_loss ? fidelity(envs, p_cur, q_cur, p, q, o) : 0 diff --git a/src/beliefpropagation.jl b/src/beliefpropagation.jl index 5411c6d4..07d2ef31 100644 --- a/src/beliefpropagation.jl +++ b/src/beliefpropagation.jl @@ -10,15 +10,21 @@ function message_tensors( ) end -function message_tensors( - subgraphs::DataGraph; itensor_constructor=inds_e -> dense(delta(inds_e)) -) +function message_tensors_skeleton(subgraphs::DataGraph) mts = DataGraph{vertextype(subgraphs),vertex_data_type(subgraphs),ITensorNetwork}( directed_graph(underlying_graph(subgraphs)) ) for v in vertices(mts) mts[v] = subgraphs[v] end + + return mts +end + +function message_tensors( + subgraphs::DataGraph; itensor_constructor=inds_e -> dense(delta(inds_e)) +) + mts = message_tensors_skeleton(subgraphs) for e in edges(subgraphs) inds_e = commoninds(subgraphs[src(e)], subgraphs[dst(e)]) mts[e] = ITensorNetwork(map(itensor_constructor, inds_e)) @@ -36,15 +42,21 @@ function update_message_tensor( mts::Vector{ITensorNetwork}; contract_kwargs=(; alg="density_matrix", output_structure=path_graph_structure, maxdim=1), ) - contract_list = ITensorNetwork[mts; ITensorNetwork([tn[v] for v in subgraph_vertices])] + mts_itensors = reduce(vcat, ITensor.(mts); init=ITensor[]) + contract_list = ITensor[mts_itensors; ITensor[tn[v] for v in subgraph_vertices]] tn = if isone(length(contract_list)) copy(only(contract_list)) else - reduce(⊗, contract_list) + ITensorNetwork(contract_list) + end + + if contract_kwargs.alg != "exact" + contract_output = contract(tn; contract_kwargs...) + else + contract_output = contract(tn; sequence=contraction_sequence(tn; alg="optimal")) end - contract_output = contract(tn; contract_kwargs...) itn = if typeof(contract_output) == ITensor ITensorNetwork(contract_output) else @@ -68,18 +80,29 @@ function belief_propagation_iteration( tn::ITensorNetwork, mts::DataGraph; contract_kwargs=(; alg="density_matrix", output_structure=path_graph_structure, maxdim=1), + compute_norm=false, ) new_mts = copy(mts) - for e in edges(mts) + c = 0 + es = edges(mts) + for e in es environment_tensornetworks = ITensorNetwork[ - mts[e_in] for e_in in setdiff(boundary_edges(mts, src(e); dir=:in), [reverse(e)]) + mts[e_in] for e_in in setdiff(boundary_edges(mts, [src(e)]; dir=:in), [reverse(e)]) ] new_mts[src(e) => dst(e)] = update_message_tensor( tn, mts[src(e)], environment_tensornetworks; contract_kwargs ) + + if compute_norm + LHS, RHS = ITensors.contract(ITensor(mts[src(e) => dst(e)])), + ITensors.contract(ITensor(new_mts[src(e) => dst(e)])) + LHS /= sum(diag(LHS)) + RHS /= sum(diag(RHS)) + c += 0.5 * norm(LHS - RHS) + end end - return new_mts + return new_mts, c / (length(es)) end function belief_propagation( @@ -87,9 +110,19 @@ function belief_propagation( mts::DataGraph; contract_kwargs=(; alg="density_matrix", output_structure=path_graph_structure, maxdim=1), niters=20, + target_precision::Union{Float64,Nothing}=nothing, ) + compute_norm = target_precision == nothing ? false : true for i in 1:niters - mts = belief_propagation_iteration(tn, mts; contract_kwargs) + mts, c = belief_propagation_iteration(tn, mts; contract_kwargs, compute_norm) + if compute_norm && c <= target_precision + println( + "Belief Propagation finished. Reached a canonicalness of " * + string(c) * + " after $i iterations. ", + ) + break + end end return mts end @@ -101,12 +134,10 @@ function belief_propagation( npartitions=nothing, subgraph_vertices=nothing, niters=20, + target_precision::Union{Float64,Nothing}=nothing, ) mts = message_tensors(tn; nvertices_per_partition, npartitions, subgraph_vertices) - for i in 1:niters - mts = belief_propagation_iteration(tn, mts; contract_kwargs) - end - return mts + return belief_propagation(tn, mts; contract_kwargs, niters, target_precision) end """ diff --git a/src/gauging.jl b/src/gauging.jl index b984b31d..f0616d49 100644 --- a/src/gauging.jl +++ b/src/gauging.jl @@ -1,31 +1,39 @@ -"""Put an ITensorNetwork into the symmetric gauge and also return the message tensors (which are the diagonal bond matrices)""" -function symmetric_gauge( - ψ::ITensorNetwork; +"""initialize bond tensors of an ITN to identity matrices""" +function initialize_bond_tensors(ψ::ITensorNetwork; index_map=prime) + bond_tensors = DataGraph{vertextype(ψ),ITensor,ITensor}(underlying_graph(ψ)) + + for e in edges(ψ) + index = commoninds(ψ[src(e)], ψ[dst(e)]) + bond_tensors[e] = dense(delta(index, index_map(index))) + end + + return bond_tensors +end + +"""Use an ITensorNetwork ψ, its bond tensors and gauging mts to put ψ into the vidal gauge, return the bond tensors and ψ_vidal.""" +function vidal_gauge( + ψ::ITensorNetwork, + mts::DataGraph, + bond_tensors::DataGraph; eigen_message_tensor_cutoff=10 * eps(real(scalartype(ψ))), regularization=10 * eps(real(scalartype(ψ))), - niters=30, + svd_kwargs..., ) - ψψ = ψ ⊗ prime(dag(ψ); sites=[]) - Z = partition(ψψ; subgraph_vertices=collect(values(group(v -> v[1], vertices(ψψ))))) - mts = message_tensors(Z) - mts = belief_propagation(ψψ, mts; contract_kwargs=(; alg="exact"), niters) + ψ_vidal = copy(ψ) - ψsymm = copy(ψ) - symm_mts = copy(mts) - - for e in edges(ψ) + for e in edges(ψ_vidal) vsrc, vdst = src(e), dst(e) s1, s2 = find_subgraph((vsrc, 1), mts), find_subgraph((vdst, 1), mts) - - forward_mt = mts[s1 => s2][first(vertices(mts[s1 => s2]))] - backward_mt = mts[s2 => s1][first(vertices(mts[s2 => s1]))] - - edge_ind = commoninds(forward_mt, ψsymm[vsrc]) + edge_ind = commoninds(ψ_vidal[vsrc], ψ_vidal[vdst]) edge_ind_sim = sim(edge_ind) - X_D, X_U = eigen(forward_mt; ishermitian=true, cutoff=eigen_message_tensor_cutoff) - Y_D, Y_U = eigen(backward_mt; ishermitian=true, cutoff=eigen_message_tensor_cutoff) + X_D, X_U = eigen( + ITensor(mts[s1 => s2]); ishermitian=true, cutoff=eigen_message_tensor_cutoff + ) + Y_D, Y_U = eigen( + ITensor(mts[s2 => s1]); ishermitian=true, cutoff=eigen_message_tensor_cutoff + ) X_D, Y_D = map_diag(x -> x + regularization, X_D), map_diag(x -> x + regularization, Y_D) @@ -36,23 +44,167 @@ function symmetric_gauge( inv_rootX = X_U * inv_rootX_D * prime(dag(X_U)) inv_rootY = Y_U * inv_rootY_D * prime(dag(Y_U)) - ψsymm[vsrc] = noprime(ψsymm[vsrc] * inv_rootX) - ψsymm[vdst] = noprime(ψsymm[vdst] * inv_rootY) + ψ_vidal[vsrc] = noprime(ψ_vidal[vsrc] * inv_rootX) + ψ_vidal[vdst] = noprime(ψ_vidal[vdst] * inv_rootY) - Ce = rootX * replaceinds(rootY, edge_ind, edge_ind_sim) + Ce = rootX * prime(bond_tensors[e]) + replaceinds!(Ce, edge_ind'', edge_ind') + Ce = Ce * replaceinds(rootY, edge_ind, edge_ind_sim) - U, S, V = svd(Ce, edge_ind) - rootS = sqrt_diag(S) + U, S, V = svd(Ce, edge_ind; svd_kwargs...) - ψsymm[vsrc] = replaceinds(ψsymm[vsrc] * U * rootS, commoninds(S, V), edge_ind) - ψsymm[vdst] = replaceinds(ψsymm[vdst], edge_ind, edge_ind_sim) - ψsymm[vdst] = replaceinds(ψsymm[vdst] * rootS * V, commoninds(U, S), edge_ind) + new_edge_ind = Index[Index(dim(commoninds(S, U)), tags(first(edge_ind)))] + + ψ_vidal[vsrc] = replaceinds(ψ_vidal[vsrc] * U, commoninds(S, U), new_edge_ind) + ψ_vidal[vdst] = replaceinds(ψ_vidal[vdst], edge_ind, edge_ind_sim) + ψ_vidal[vdst] = replaceinds(ψ_vidal[vdst] * V, commoninds(V, S), new_edge_ind) S = replaceinds( - S, [commoninds(S, U)..., commoninds(S, V)...] => [edge_ind..., prime(edge_ind)...] + S, + [commoninds(S, U)..., commoninds(S, V)...] => + [new_edge_ind..., prime(new_edge_ind)...], ) - symm_mts[s1 => s2], symm_mts[s2 => s1] = ITensorNetwork(S), ITensorNetwork(S) + bond_tensors[e] = S + end + + return ψ_vidal, bond_tensors +end + +"""Use an ITensorNetwork ψ in the symmetric gauge and its mts to put ψ into the vidal gauge. Return the bond tensors and ψ_vidal.""" +function vidal_gauge( + ψ::ITensorNetwork, + mts::DataGraph; + eigen_message_tensor_cutoff=10 * eps(real(scalartype(ψ))), + regularization=10 * eps(real(scalartype(ψ))), + svd_kwargs..., +) + bond_tensors = initialize_bond_tensors(ψ) + return vidal_gauge( + ψ, mts, bond_tensors; eigen_message_tensor_cutoff, regularization, svd_kwargs... + ) +end + +"""Put an ITensorNetwork into the vidal gauge (by computing the message tensors), return the network and the bond tensors. Will also return the mts that were constructed""" +function vidal_gauge( + ψ::ITensorNetwork; + eigen_message_tensor_cutoff=10 * eps(real(scalartype(ψ))), + regularization=10 * eps(real(scalartype(ψ))), + niters=30, + target_canonicalness::Union{Nothing,Float64}=nothing, + svd_kwargs..., +) + ψψ = ψ ⊗ prime(dag(ψ); sites=[]) + Z = partition(ψψ; subgraph_vertices=collect(values(group(v -> v[1], vertices(ψψ))))) + mts = message_tensors(Z) + + mts = belief_propagation( + ψψ, mts; contract_kwargs=(; alg="exact"), niters, target_precision=target_canonicalness + ) + return vidal_gauge( + ψ, mts; eigen_message_tensor_cutoff, regularization, niters, svd_kwargs... + ) +end + +"""Transform from an ITensor in the Vidal Gauge (bond tensors) to the Symmetric Gauge (message tensors)""" +function vidal_to_symmetric_gauge(ψ::ITensorNetwork, bond_tensors::DataGraph) + ψsymm = copy(ψ) + ψψsymm = ψsymm ⊗ prime(dag(ψsymm); sites=[]) + Z = partition( + ψψsymm; subgraph_vertices=collect(values(group(v -> v[1], vertices(ψψsymm)))) + ) + ψsymm_mts = message_tensors_skeleton(Z) + + for e in edges(ψsymm) + s1, s2 = find_subgraph((src(e), 1), ψsymm_mts), find_subgraph((dst(e), 1), ψsymm_mts) + root_S = sqrt_diag(bond_tensors[e]) + ψsymm[src(e)] = noprime(ψsymm[src(e)] * root_S) + ψsymm[dst(e)] = noprime(ψsymm[dst(e)] * root_S) + + ψsymm_mts[s1 => s2], ψsymm_mts[s2 => s1] = ITensorNetwork(bond_tensors[e]), + ITensorNetwork(bond_tensors[e]) + end + + return ψsymm, ψsymm_mts +end + +"""Put an ITensorNetwork into the symmetric gauge and also return the message tensors (which are the diagonal bond matrices from the Vidal Gauge)""" +function symmetric_gauge( + ψ::ITensorNetwork; + eigen_message_tensor_cutoff=10 * eps(real(scalartype(ψ))), + regularization=10 * eps(real(scalartype(ψ))), + niters=30, + target_canonicalness::Union{Nothing,Float64}=nothing, + svd_kwargs..., +) + ψsymm, bond_tensors = vidal_gauge( + ψ; + eigen_message_tensor_cutoff, + regularization, + niters, + target_canonicalness, + svd_kwargs..., + ) + + return vidal_to_symmetric_gauge(ψsymm, bond_tensors) +end + +"""Transform from the Symmetric Gauge (message tensors) to the Vidal Gauge (bond tensors)""" +function symmetric_to_vidal_gauge( + ψ::ITensorNetwork, mts::DataGraph; regularization=10 * eps(real(scalartype(ψ))) +) + bond_tensors = DataGraph{vertextype(ψ),ITensor,ITensor}(underlying_graph(ψ)) + + ψ_vidal = copy(ψ) + + for e in edges(ψ) + s1, s2 = find_subgraph((src(e), 1), mts), find_subgraph((dst(e), 1), mts) + bond_tensors[e] = ITensor(mts[s1 => s2]) + invroot_S = invsqrt_diag(map_diag(x -> x + regularization, bond_tensors[e])) + ψ_vidal[src(e)] = noprime(invroot_S * ψ_vidal[src(e)]) + ψ_vidal[dst(e)] = noprime(invroot_S * ψ_vidal[dst(e)]) + end + + return ψ_vidal, bond_tensors +end + +"""Function to measure the 'isometries' of a state in the Vidal Gauge""" +function vidal_itn_isometries(ψ::ITensorNetwork, bond_tensors::DataGraph) + isometries = DataGraph{vertextype(ψ),ITensor,ITensor}(directed_graph(underlying_graph(ψ))) + + for e in vcat(edges(ψ), reverse.(edges(ψ))) + vsrc, vdst = src(e), dst(e) + ψv = copy(ψ[vsrc]) + for vn in setdiff(neighbors(ψ, vsrc), [vdst]) + ψv = noprime(ψv * bond_tensors[vn => vsrc]) + end + + ψvdag = dag(ψv) + replaceind!(ψvdag, commonind(ψv, ψ[vdst]), commonind(ψv, ψ[vdst])') + isometries[e] = ψvdag * ψv end - return ψsymm, symm_mts + return isometries +end + +"""Function to measure the 'canonicalness' of a state in the Vidal Gauge""" +function vidal_itn_canonicalness(ψ::ITensorNetwork, bond_tensors::DataGraph) + f = 0 + + isometries = vidal_itn_isometries(ψ, bond_tensors) + + for e in edges(isometries) + LHS = isometries[e] / sum(diag(isometries[e])) + id = dense(delta(inds(LHS))) + id /= sum(diag(id)) + f += 0.5 * norm(id - LHS) + end + + return f / (length(edges(isometries))) +end + +"""Function to measure the 'canonicalness' of a state in the Symmetric Gauge""" +function symmetric_itn_canonicalness(ψ::ITensorNetwork, mts::DataGraph) + ψ_vidal, bond_tensors = symmetric_to_vidal_gauge(ψ, mts) + + return vidal_itn_canonicalness(ψ_vidal, bond_tensors) end diff --git a/src/itensornetwork.jl b/src/itensornetwork.jl index a248cad4..ad59f441 100644 --- a/src/itensornetwork.jl +++ b/src/itensornetwork.jl @@ -259,3 +259,12 @@ function insert_links(ψ::ITensorNetwork, edges::Vector=edges(ψ); cutoff=1e-15) end ITensorNetwork(itns::Vector{ITensorNetwork}) = reduce(⊗, itns) + +function ITensors.ITensor(ψ::ITensorNetwork) + vs = vertices(ψ) + if length(vs) == 1 + return ψ[first(vs)] + else + return ITensor[ψ[v] for v in vertices(ψ)] + end +end diff --git a/src/tensornetworkoperators.jl b/src/tensornetworkoperators.jl new file mode 100644 index 00000000..e515685b --- /dev/null +++ b/src/tensornetworkoperators.jl @@ -0,0 +1,43 @@ +""" +Take a vector of gates which act on different edges/ vertices of an Inds network and construct the tno which represents prod(gates). +""" +function gate_group_to_tno(s::IndsNetwork, gates::Vector{ITensor}) + + #Construct indsnetwork for TNO + s_O = union_all_inds(s, prime(s; links=[])) + + O = delta_network(s_O) + + for gate in gates + v⃗ = vertices(s)[findall(i -> (length(commoninds(s[i], inds(gate))) != 0), vertices(s))] + if length(v⃗) == 1 + O[v⃗[1]] = product(O[v⃗[1]], gate) + elseif length(v⃗) == 2 + e = v⃗[1] => v⃗[2] + if !has_edge(s, e) + error("Vertices where the gates are being applied must be neighbors for now.") + end + Osrc, Odst = factorize(gate, commoninds(O[v⃗[1]], gate)) + O[v⃗[1]] = product(O[v⃗[1]], Osrc) + O[v⃗[2]] = product(O[v⃗[2]], Odst) + else + error( + "Can only deal with gates acting on one or two sites for now. Physical indices of the gates must also match those in the IndsNetwork.", + ) + end + end + + return combine_linkinds(O) +end + +"""Take a series of gates acting on the physical indices specified by IndsNetwork convert into a series of tnos +whose product represents prod(gates). Useful for keeping the bond dimension of each tno low (as opposed to just building a single tno)""" +function get_tnos(s::IndsNetwork, gates::Vector{ITensor}) + tnos = ITensorNetwork[] + gate_groups = group_commuting_itensors(gates) + for group in gate_groups + push!(tnos, gate_group_to_tno(s, group)) + end + + return tnos +end diff --git a/test/test_fullupdate.jl b/test/test_apply.jl similarity index 75% rename from test/test_fullupdate.jl rename to test/test_apply.jl index 0a7a8b02..3579dca9 100644 --- a/test/test_fullupdate.jl +++ b/test/test_apply.jl @@ -1,5 +1,12 @@ using ITensorNetworks -using ITensorNetworks: belief_propagation, get_environment, contract_inner, message_tensors +using ITensorNetworks: + belief_propagation, + get_environment, + contract_inner, + message_tensors, + nested_graph_leaf_vertices, + vidal_gauge, + vidal_to_symmetric_gauge using Test using Compat using ITensors @@ -9,7 +16,7 @@ using Random using LinearAlgebra using SplitApplyCombine -@testset "full_update" begin +@testset "apply" begin Random.seed!(5623) g_dims = (2, 3) n = prod(g_dims) @@ -30,6 +37,8 @@ using SplitApplyCombine mtsSBP = belief_propagation(ψψ, mtsSBP; contract_kwargs=(; alg="exact"), niters=50) envsSBP = get_environment(ψψ, mtsSBP, [(v1, 1), (v1, 2), (v2, 1), (v2, 2)]) + ψ_vidal, bond_tensors = vidal_gauge(ψ, mtsSBP) + #This grouping will correspond to calculating the environments exactly (each column of the grid is a partition) vertex_groupsGBP = nested_graph_leaf_vertices( partition(partition(ψψ, group(v -> v[1][1], vertices(ψψ))); nvertices_per_partition=1) @@ -44,7 +53,7 @@ using SplitApplyCombine for i in 1:ngates o = ITensors.op("RandomUnitary", s[v1]..., s[v2]...) - ψOexact = apply(o, ψ; maxdim=4 * χ) + ψOexact = apply(o, ψ; cutoff=1e-16) ψOSBP = apply( o, ψ; @@ -54,6 +63,8 @@ using SplitApplyCombine print_fidelity_loss=true, envisposdef=true, ) + ψOVidal, bond_tensors_t = apply(o, ψ_vidal, bond_tensors; maxdim=χ, normalize=true) + ψOVidal_symm, _ = vidal_to_symmetric_gauge(ψOVidal, bond_tensors_t) ψOGBP = apply( o, ψ; @@ -66,10 +77,15 @@ using SplitApplyCombine fSBP = contract_inner(ψOSBP, ψOexact) / sqrt(contract_inner(ψOexact, ψOexact) * contract_inner(ψOSBP, ψOSBP)) + fVidal = + contract_inner(ψOVidal_symm, ψOexact) / + sqrt(contract_inner(ψOexact, ψOexact) * contract_inner(ψOVidal_symm, ψOVidal_symm)) fGBP = contract_inner(ψOGBP, ψOexact) / sqrt(contract_inner(ψOexact, ψOexact) * contract_inner(ψOGBP, ψOGBP)) @test real(fGBP * conj(fGBP)) >= real(fSBP * conj(fSBP)) + + @test isapprox(real(fSBP * conj(fSBP)), real(fVidal * conj(fVidal)); atol=1e-3) end end diff --git a/test/test_belief_propagation.jl b/test/test_belief_propagation.jl index 9972cf2b..6bc1eb01 100644 --- a/test/test_belief_propagation.jl +++ b/test/test_belief_propagation.jl @@ -40,7 +40,7 @@ ITensors.disable_warn_order() Z = partition(ψψ; subgraph_vertices=collect(values(group(v -> v[1], vertices(ψψ))))) mts = message_tensors(Z) - mts = belief_propagation(ψψ, mts; contract_kwargs=(; alg="exact")) + mts = belief_propagation(ψψ, mts; contract_kwargs=(; alg="exact"), target_precision=1e-8) numerator_network = approx_network_region( ψψ, mts, [(v, 1)]; verts_tn=ITensorNetwork(ITensor[apply(op("Sz", s[v]), ψ[v])]) diff --git a/test/test_symmetriseitensornetwork.jl b/test/test_gauging.jl similarity index 64% rename from test/test_symmetriseitensornetwork.jl rename to test/test_gauging.jl index cac1bbd5..529e2d3e 100644 --- a/test/test_symmetriseitensornetwork.jl +++ b/test/test_gauging.jl @@ -1,13 +1,22 @@ using ITensors using ITensorNetworks -using ITensorNetworks: belief_propagation, contract_inner, symmetric_gauge, message_tensors +using ITensorNetworks: + belief_propagation, + contract_inner, + symmetric_gauge, + symmetric_to_vidal_gauge, + message_tensors, + vidal_itn_canonicalness, + vidal_gauge, + symmetric_itn_canonicalness, + belief_propagation_iteration using NamedGraphs using Test using Compat using Random using SplitApplyCombine -@testset "symmetrise_itensornetwork" begin +@testset "gauging" begin n = 3 dims = (n, n) g = named_grid(dims) @@ -36,4 +45,12 @@ using SplitApplyCombine m_e = ψ_symm_mts_V2[e][first(vertices(ψ_symm_mts_V2[e]))] @test diagITensor(vector(diag(m_e)), inds(m_e)) ≈ m_e atol = 1e-8 end + + @test symmetric_itn_canonicalness(ψ_symm, ψ_symm_mts) < 1e-6 + + ψ_vidal, bond_tensors = vidal_gauge(ψ; target_canonicalness=1e-6) + @test vidal_itn_canonicalness(ψ_vidal, bond_tensors) < 1e-6 + + ψ_vidal, bond_tensors = symmetric_to_vidal_gauge(ψ_symm, ψ_symm_mts) + @test vidal_itn_canonicalness(ψ_vidal, bond_tensors) < 1e-6 end diff --git a/test/test_tno.jl b/test/test_tno.jl new file mode 100644 index 00000000..115bf377 --- /dev/null +++ b/test/test_tno.jl @@ -0,0 +1,54 @@ +using Test +using ITensorNetworks +using ITensors +using Random + +using ITensorNetworks: gate_group_to_tno, get_tnos, group_commuting_itensors, contract_inner + +@testset "TN operator Basics" begin + L = 3 + g = named_grid((L, L)) + s = siteinds("S=1/2", g) + + ℋ = ising(g; h=1.5) + gates = Vector{ITensor}(ℋ, s) + gate_groups = group_commuting_itensors(gates) + + @test typeof(gate_groups) == Vector{Vector{ITensor}} + + #Construct a number of tnos whose product is prod(gates) + tnos = get_tnos(s, gates) + @test length(tnos) == length(gate_groups) + + #Construct a single tno which represents prod(gates) + single_tno = gate_group_to_tno(s, gates) + + ψ = randomITensorNetwork(s; link_space=2) + + ψ_gated = copy(ψ) + for gate in gates + ψ_gated = apply(gate, ψ_gated) + end + ψ_tnod = copy(ψ) + for tno in tnos + ψ_tnod = flatten_networks(ψ_tnod, tno) + for v in vertices(ψ_tnod) + noprime!(ψ_tnod[v]) + end + end + ψ_tno = copy(ψ) + ψ_tno = flatten_networks(ψ_tno, single_tno) + for v in vertices(ψ_tno) + noprime!(ψ_tno[v]) + end + + z1 = contract_inner(ψ_gated, ψ_gated) + z2 = contract_inner(ψ_tnod, ψ_tnod) + z3 = contract_inner(ψ_tno, ψ_tno) + f12 = contract_inner(ψ_tnod, ψ_gated) / sqrt(z1 * z2) + f13 = contract_inner(ψ_tno, ψ_gated) / sqrt(z1 * z3) + f23 = contract_inner(ψ_tno, ψ_tnod) / sqrt(z2 * z3) + @test f12 * conj(f12) ≈ 1.0 + @test f13 * conj(f13) ≈ 1.0 + @test f23 * conj(f23) ≈ 1.0 +end