-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathdrop_scoring.py
318 lines (277 loc) · 11.4 KB
/
drop_scoring.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
import argparse
import tqdm
from tqdm import trange
import torch
import torch.nn.functional as F
from transformers import AutoTokenizer, AutoModelForCausalLM
try:
import wandb
has_wandb = True
except ModuleNotFoundError:
has_wandb = False
from src.data_utils import get_data
from src.common_utils import fix_seed
from src.model_utils import (
get_layers,
get_attn_layer_name,
get_mlp_layer_name,
make_dummy_forward,
dummy_initialize,
restore_forward,
)
from src.metrics import compute_perplexity, compute_kl_div
@torch.no_grad()
def compute_cosine_similarity(X_before, X_after, device):
cosine_sim = F.cosine_similarity(X_before.to(device), X_after.to(device), dim=1)
average_cosine_sim = cosine_sim.mean()
return average_cosine_sim.item()
@torch.no_grad()
def compute_l2_error(X_before, X_after, device):
l2_error = torch.norm(X_before.to(device) - X_after.to(device), p=2, dim=1).mean()
return l2_error.item()
@torch.no_grad()
def compute_l2_error_normalized(X_before, X_after, device):
X_before = F.normalize(X_before, p=2, dim=1)
X_after = F.normalize(X_after, p=2, dim=1)
l2_error = torch.norm(X_before.to(device) - X_after.to(device), p=2, dim=1).mean()
return l2_error.item()
@torch.no_grad()
def compute_norm_ratio(X_before, X_after, device):
print(X_before.shape, X_after.shape)
X_before = X_before.float().to(device)
X_after = X_after.float().to(device)
with torch.no_grad():
score = ((X_after - X_before).norm(dim=1) / X_after.norm(dim=1)).mean()
return float(score)
@torch.no_grad()
def get_embeddings(model, data):
layer_to_embs = {}
for j in range(len(data)):
print(f"{j}/{len(data)}")
outputs = model(data[j].to(model.device), output_hidden_states=True)
hidden_states = outputs.hidden_states
for i, emb in enumerate(hidden_states):
if i in layer_to_embs:
layer_to_embs[i] += list(emb.cpu().detach()[0])
else:
layer_to_embs[i] = list(emb.cpu().detach()[0])
del outputs
for i in range(len(hidden_states)):
layer_to_embs[i] = torch.stack(layer_to_embs[i])
return layer_to_embs
def parse_args():
parser = argparse.ArgumentParser()
# Model params
parser.add_argument(
"--model_name_or_path",
type=str,
required=True,
help="The name or path to the model being pruned",
)
parser.add_argument(
"--tokenizer_name",
type=str,
default=None,
help="The name or path to the tokenizer. By default use model tokenizer.",
)
# Data params
parser.add_argument(
"--calibration_data",
type=str,
required=True,
help="The name or dataset or path used for calibration.",
)
parser.add_argument("--calibration_tokens", type=int, required=True, help="Number of tokens for calibration.")
parser.add_argument(
"--calibration_sequence_length", type=int, required=True, help="Length of calibration sequences."
)
parser.add_argument(
"--eval_datasets",
nargs="+",
type=str,
default=["fineweb_edu", "wikitext2", "c4"],
help="Datasets used for evaluation",
)
parser.add_argument("--no_eval", action="store_true", help="Whether to skip evaluation")
parser.add_argument("--eval_every", default=1, type=int, help="Eval every # generations.")
parser.add_argument(
"--eval_tokens", default=524288, type=int, help="Number of tokens for evaluation (not used for wiki2/c4)."
)
parser.add_argument("--eval_sequence_length", default=None, type=int, help="Length of evaluation sequences.")
# Logging params
parser.add_argument("--log_wandb", default=False, action="store_true", help="Whether to log to W&B")
# Scoring params
parser.add_argument(
"--scoring_method",
type=str,
choices=[
"cosine_similarity",
"perplexity",
"window_cosine_similarity",
"norm_ratio",
"kl_div",
"l2",
"l2_normalized",
],
help="Scoring method for layer dropping.",
)
parser.add_argument("--sparsities", nargs="+", type=float, help="Sparsities to evaluate")
# Misc params
parser.add_argument(
"--dtype",
type=str,
default="float16",
choices=["float16", "float32", "bfloat16"],
help="dtype to load the model.",
)
parser.add_argument(
"--attn_implementation",
type=str,
default=None,
choices=["eager", "sdpa", "flash_attention_2"],
help="Attention implementation: eager, sdpa, or flash_attention_2",
)
parser.add_argument("--use_fast_tokenizer", action="store_true", help="Whether to use fast tokenizer.")
parser.add_argument("--seed", default=0, type=int, help="Random seed.")
args = parser.parse_args()
return args
def main():
args = parse_args()
# Get device and dtype
assert torch.cuda.is_available()
device = f"cuda"
dtype = getattr(torch, args.dtype)
# Fix seed
fix_seed(args.seed)
# Init W&B logger
if args.log_wandb:
assert has_wandb, "`wandb` not installed, try pip install `wandb`"
wandb.init(config=args)
# Load model
model = AutoModelForCausalLM.from_pretrained(
args.model_name_or_path,
device_map="auto",
low_cpu_mem_usage=True,
torch_dtype=dtype,
attn_implementation=args.attn_implementation,
trust_remote_code=True,
)
print(model.config.model_type)
print(model)
model.config.use_cache = False # do not use cache
# Tokenizer
tokenizer = AutoTokenizer.from_pretrained(
args.tokenizer_name or args.model_name_or_path, use_fast=args.use_fast_tokenizer
)
# Load calibration data
args.calibration_sequence_length = args.calibration_sequence_length or model.config.max_position_embeddings
calibration_data = get_data(
args.calibration_data,
args.calibration_tokens,
args.calibration_sequence_length,
tokenizer,
train=True,
)
# Load evaluation data
args.sequence_length = args.eval_sequence_length or model.config.max_position_embeddings
eval_datasets = []
for eval_dataset_name in args.eval_datasets:
eval_datasets.append(
get_data(
eval_dataset_name,
args.eval_tokens, # ignored for WikiText2 and C4
args.eval_sequence_length,
tokenizer,
train=False,
)
)
target_logits = []
if args.scoring_method == "kl_div":
# Compute target logits (calibration)
for i in trange(0, len(calibration_data), desc="Computing target logits (calib)", leave=False):
with torch.no_grad():
target_logits.append(model(calibration_data[i].to(device)).logits.cpu())
layers = get_layers(model)
total_blocks = len(layers)
for layer in layers:
dummy_initialize(getattr(layer, get_attn_layer_name(model)))
dummy_initialize(getattr(layer, get_mlp_layer_name(model)))
dummy_initialize(layer)
if args.scoring_method == "window_cosine_similarity":
embs_dict = get_embeddings(model, calibration_data)
for sparsity in args.sparsities:
num_dropped = int(sparsity * total_blocks)
scores = []
for start in range(0, total_blocks + 1 - num_dropped):
score = -compute_cosine_similarity(
embs_dict[start], embs_dict[start + num_dropped], device
) # negative because scores measures importance
scores.append((score, start))
print(f"start {start}, score {score}")
scores.sort()
best_start = scores[0][1]
for ind in range(num_dropped): # drop for evaluations of best start
make_dummy_forward(layers[best_start + ind], "attn+mlp")
print(f"Best start for {num_dropped} blocks: {best_start}")
for eval_dataset_name, eval_dataset in zip(args.eval_datasets, eval_datasets):
ppl_eval = compute_perplexity(model, eval_dataset)
print(f"{eval_dataset_name}: {ppl_eval:.2f}")
print("=" * 20)
for layer in layers: # restore all blocks
restore_forward(layer)
else: # methods that rank each block separately, yielding a remove order
if args.scoring_method == "perplexity":
scores = []
for layer_id, layer in enumerate(layers):
make_dummy_forward(layer, "attn+mlp")
ppl = compute_perplexity(model, calibration_data)
restore_forward(layer)
print(f"Perplexity for layer {layer_id} dropped: {ppl:.2f}")
scores.append((ppl, layer_id))
scores.sort()
remove_order = [layer_id for _, layer_id in scores]
elif args.scoring_method == "kl_div":
scores = []
for layer_id, layer in enumerate(layers):
make_dummy_forward(layer, "attn+mlp")
kl_div = compute_kl_div(model, calibration_data, target_logits)
restore_forward(layer)
print(f"KL Divergence for layer {layer_id} dropped: {kl_div:.2f}")
scores.append((kl_div, layer_id))
scores.sort()
remove_order = [layer_id for _, layer_id in scores]
else: # methods that compute a score for each block (without evaluating entire model)
embs_dict = get_embeddings(model, calibration_data)
scores = []
for layer_id in range(max(embs_dict.keys())):
if args.scoring_method == "cosine_similarity":
scores.append(
(-compute_cosine_similarity(embs_dict[layer_id], embs_dict[layer_id + 1], device), layer_id)
) # negative because scores measures importance
elif args.scoring_method == "norm_ratio":
scores.append((compute_norm_ratio(embs_dict[layer_id], embs_dict[layer_id + 1], device), layer_id))
elif args.scoring_method == "l2":
scores.append((compute_l2_error(embs_dict[layer_id], embs_dict[layer_id + 1], device), layer_id))
elif args.scoring_method == "l2_normalized":
scores.append(
(compute_l2_error_normalized(embs_dict[layer_id], embs_dict[layer_id + 1], device), layer_id)
)
else:
raise NotImplementedError(f"Scoring method {args.scoring_method} not implemented.")
scores.sort()
remove_order = [layer_id for _, layer_id in scores]
print(f"Remove order:{remove_order}")
print(args.sparsities)
for sparsity in args.sparsities:
num_dropped = int(sparsity * total_blocks)
for layer_id in remove_order[:num_dropped]:
make_dummy_forward(layers[layer_id], "attn+mlp")
print(f"Evaluating {num_dropped} blocks dropped...")
for eval_dataset_name, eval_dataset in zip(args.eval_datasets, eval_datasets):
ppl_eval = compute_perplexity(model, eval_dataset)
print(f"{eval_dataset_name}: {ppl_eval:.2f}")
print("=" * 20)
for layer_id in remove_order[:num_dropped]:
restore_forward(layers[layer_id])
if __name__ == "__main__":
main()