-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathextract_mads_data.py
327 lines (267 loc) · 11.8 KB
/
extract_mads_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
import os
import glob
import cv2
import numpy as np
import json
import argparse
import scipy.io
import mat73
from tools.common import undistort_image
class MADSExtracter:
def __init__(self, calibs_left_path, calibs_right_path,
rectified_left_path, rectified_right_path,
undistort, rectify_stereo):
# parse calibration data
self.calibs = self._parse_calibs(calibs_left_path, calibs_right_path)
# parse rectification data
left_rectify = self._parse_rectify(rectified_left_path, "left")
right_rectify = self._parse_rectify(rectified_right_path, "right")
self.rectify = {'left': left_rectify, 'right': right_rectify}
assert not undistort or not rectify_stereo, \
"undistort and rectify cannot be select at the same time"
self.undistort = undistort
self.rectify_stereo = rectify_stereo
def _parse_calibs(self, calibs_left_path, calibs_right_path):
"""
Extract the camera intrinsic matrix, extrinsic matrix,
and distortion coefficients.
As the intrinsic matrix of the left camera is modified based on
rectification, and the intrinsic matrix for both cameras are the same,
we use the intrinsic matrix of the right camera for both cameras.
"""
# Load the .mat file
calibs_left_data = scipy.io.loadmat(calibs_left_path)
calibs_right_data = scipy.io.loadmat(calibs_right_path)
# focal length
fc = calibs_left_data['fc']
# principal point
cc = calibs_left_data['cc']
# skew coefficient
alpha_c = calibs_left_data['alpha_c']
# distortion coefficients
kc = calibs_left_data['kc']
K = np.array(
[[fc[0][0], alpha_c[0][0] * fc[0][0], cc[0][0]],
[0, fc[1][0], cc[1][0]],
[0, 0, 1]]
).astype(np.float32).reshape(3, 3)
# rotation and translation vector
rvec_left, tvec_left = calibs_left_data['om'], calibs_left_data['T']
rvec_right, tvec_right = \
calibs_right_data['om_ext'], calibs_right_data['T_ext']
# correct the rotation vector for left camera
rvec_left = -rvec_left
R_left, _ = cv2.Rodrigues(rvec_left)
T_left = tvec_left.reshape(3, 1)
R_right, _ = cv2.Rodrigues(rvec_right)
T_right = tvec_right.reshape(3, 1)
calibs = {
'left': {
"intrinsics": K,
"rotation": R_left,
"translation": T_left,
"distortion_coeffs": kc
},
'right': {
"intrinsics": K,
"rotation": R_right,
"translation": T_right,
"distortion_coeffs": kc
}
}
return calibs
def _parse_rectify(self, rectified_path, camera):
assert camera in ["left", "right"], \
"camera must be either 'left' or 'right'"
# Load the .mat file
data = scipy.io.loadmat(rectified_path)
rectify = {
"ind_new": data[f'ind_new_{camera}'][:, 0],
"ind_1": data[f'ind_1_{camera}'][0] - 1,
"ind_2": data[f'ind_2_{camera}'][0] - 1,
"ind_3": data[f'ind_3_{camera}'][0] - 1,
"ind_4": data[f'ind_4_{camera}'][0] - 1,
"a1": data[f'a1_{camera}'][0],
"a2": data[f'a2_{camera}'][0],
"a3": data[f'a3_{camera}'][0],
"a4": data[f'a4_{camera}'][0],
}
return rectify
def rectify_calibrated(self, img, camera):
assert camera in ["left", "right"], \
"camera must be either 'left' or 'right'"
info = self.rectify[camera]
ind_new = info['ind_new']
ind_1, ind_2, ind_3, ind_4 = \
info['ind_1'], info['ind_2'], info['ind_3'], info['ind_4']
a1, a2, a3, a4 = \
info['a1'], info['a2'], info['a3'], info['a4']
Im = img.copy()
h, w, c = Im.shape
Im = Im.reshape((-1, c), order='F')
I1 = Im[:, 0]
I2 = Im[:, 1]
I3 = Im[:, 2]
Im_new = np.ones_like(Im) * 144
Im_new[ind_new, 0] = (
a1 * I1[ind_1] + a2 * I1[ind_2]
+ a3 * I1[ind_3] + a4 * I1[ind_4]).astype(np.uint8)
Im_new[ind_new, 1] = (
a1 * I2[ind_1] + a2 * I2[ind_2]
+ a3 * I2[ind_3] + a4 * I2[ind_4]).astype(np.uint8)
Im_new[ind_new, 2] = (
a1 * I3[ind_1] + a2 * I3[ind_2]
+ a3 * I3[ind_3] + a4 * I3[ind_4]).astype(np.uint8)
Im_new = Im_new.reshape((h, w, c), order='F').copy()
return Im_new
def extract(self, video_path, camera, output_dir):
# Create a directory to save the images
output_path = os.path.join(output_dir, camera)
if not os.path.exists(output_path):
os.makedirs(output_path)
# Open the video file
cap = cv2.VideoCapture(video_path)
# Loop through the frames of the video
frame_count = 0
while True:
# Read the next frame
ret, frame = cap.read()
# If there are no more frames, break out of the loop
if not ret:
break
if self.undistort:
frame = undistort_image(
frame, self.calibs[camera]['intrinsics'],
self.calibs[camera]['distortion_coeffs']
)
elif self.rectify_stereo:
frame = self.rectify_calibrated(frame, camera)
# Save the frame as an image
img_path = os.path.join(
output_path, f"{camera}_{frame_count:04d}.jpg")
cv2.imwrite(img_path, frame)
# Increment the frame count
frame_count += 1
# Release the video capture object and close all windows
cap.release()
cv2.destroyAllWindows()
def save_gt_pose(self, gt_pose_path, output_dir):
# Create a directory to save the ground truths
output_path = os.path.join(output_dir, "pose")
if not os.path.exists(output_path):
os.makedirs(output_path)
# Load the .mat file
gt_pose = scipy.io.loadmat(gt_pose_path)['GTpose2'][0]
# convert camera coefficients to list
calibs = {}
for camera in ["left", "right"]:
calibs[f"cam_{camera}"] = {
"intrinsics": self.calibs[camera]['intrinsics'].tolist(),
"rotation": self.calibs[camera]['rotation'].tolist(),
"translation": self.calibs[camera]['translation'].tolist(),
"distortion_coeffs":
self.calibs[camera]['distortion_coeffs'].tolist()
}
for i in range(len(gt_pose)):
info = {
'calibs_info': calibs,
'pose_3d': gt_pose[i].tolist()
}
# save the converted data as a JSON file
pose_path = os.path.join(output_path, f"gt_pose_{i:04d}.json")
with open(pose_path, 'w') as f:
json.dump(info, f, indent=4, sort_keys=True)
def save_depth_map(self, depth_map_path, output_dir):
# Create a directory to save the depth maps
output_path = os.path.join(output_dir, "depth_map")
if not os.path.exists(output_path):
os.makedirs(output_path)
# Load the .mat file
try:
depth_map = scipy.io.loadmat(depth_map_path)['depthMaps']
except NotImplementedError:
print("Using mat73 to load the .mat file")
try:
depth_map = mat73.loadmat(depth_map_path)['depthMaps']
except TypeError:
print("Failed to load the .mat file")
exit(1)
depth_map = depth_map.transpose(2, 0, 1)
for i in range(len(depth_map)):
# Save the depth map as a numpy array
depth_path = os.path.join(output_path, f"depth_map_{i:04d}.npy")
np.save(depth_path, depth_map[i])
def process(self, video_left_path, video_right_path, gt_pose_path,
depth_map_path, output_dir):
# path to save output
if not os.path.exists(output_dir):
os.makedirs(output_dir)
# save ground truth
self.save_gt_pose(gt_pose_path, output_dir)
# save depth map
self.save_depth_map(depth_map_path, output_dir)
# convert video to images and save ground truth pose into .json file
# if groud truth pose is available
self.extract(video_left_path, "left", output_dir)
self.extract(video_right_path, "right", output_dir)
def read_file(opt):
for movement in ["HipHop", "Jazz", "Kata", "Sports", "Taichi"]:
# left camera calibration data
calibs_left_path = os.path.join(
opt.depth_data_path, movement, "Calib_C0_left.mat")
# right camera calibration data
calibs_right_path = os.path.join(
opt.multiview_data_path, movement, "Calib_Cam0.mat")
# stereo retification coefficients
rectified_left_path = os.path.join(
opt.depth_data_path, movement, "rect_calib_left.mat")
rectified_right_path = os.path.join(
opt.depth_data_path, movement, "rect_calib_right.mat")
# videos and ground truth pose
video_left_path = sorted(glob.glob(os.path.join(
opt.depth_data_path, movement, "*_Left.avi")))
video_right_path = sorted(glob.glob(os.path.join(
opt.depth_data_path, movement, "*_Right.avi")))
depth_map_path = sorted(glob.glob(os.path.join(
opt.depth_data_path, movement, "*_depthMaps.mat")))
gt_pose_path = sorted(glob.glob(os.path.join(
opt.depth_data_path, movement, "*_GT.mat")))
# extract data
convert = MADSExtracter(calibs_left_path, calibs_right_path,
rectified_left_path, rectified_right_path,
opt.undistort, opt.rectify)
assert len(video_left_path) == len(video_right_path) == \
len(gt_pose_path), \
"Number of videos and ground truth pose must be the same"
for i in range(len(video_left_path)):
print(f"Processing {movement} {i+1}/{len(video_left_path)}")
# set the validaiton data to the first video of every movement
if i == 0:
output_dir = os.path.join(
opt.output_path, "valid", movement, f"{i}")
else:
output_dir = os.path.join(
opt.output_path, "train", movement, f"{i}")
convert.process(video_left_path[i], video_right_path[i],
gt_pose_path[i], depth_map_path[i], output_dir)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument('--depth_data_path', type=str,
default="data/MADS/MADS_depth/depth_data",
help='path that store stereo images and ground truth '
'pose')
parser.add_argument('--multiview_data_path', type=str,
default="data/MADS/MADS_multiview/multi_view_data",
help='path that store multiview camera infos, we only '
'need the calibration data for the right camera '
'here')
parser.add_argument('--output_path', type=str,
default="data/MADS_extract",
help='path to save processed output')
parser.add_argument('--undistort', action='store_true',
help='whether to undistort each image')
parser.add_argument('--rectify', action='store_true',
help='whether to save rectified stereo images')
opt = parser.parse_args()
print(opt)
read_file(opt)