-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathget_f1_iou.py
49 lines (42 loc) · 1.5 KB
/
get_f1_iou.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
"""
# Script for evaluating F score and mIOU
"""
from __future__ import print_function, division
import ntpath
import numpy as np
from PIL import Image
# local libs
from utils.data_utils import getPaths
from utils.measure_utils import db_eval_boundary, IoU_bin
## experiment directories
obj_cat = "RO/" # sub-dir ["RI/", "FV/", "WR/", "RO/", "HD/"]
test_dir = "data/test/masks/"
#test_dir = "/mnt/data1/ImageSeg/suim/TEST/masks/"
real_mask_dir = test_dir + obj_cat # real labels
gen_mask_dir = "data/test/output/" + obj_cat # generated labels
## input/output shapes
im_res = (320, 240)
# for reading and scaling input images
def read_and_bin(im_path):
img = Image.open(im_path).resize(im_res)
img = np.array(img)/255.
img[img >= 0.5] = 1
img[img < 0.5] = 0
return img
# accumulate F1/iou values in the lists
Ps, Rs, F1s, IoUs = [], [], [], []
gen_paths = sorted(getPaths(gen_mask_dir))
real_paths = sorted(getPaths(real_mask_dir))
for gen_p, real_p in zip(gen_paths, real_paths):
gen, real = read_and_bin(gen_p), read_and_bin(real_p)
if (np.sum(real)>0):
precision, recall, F1 = db_eval_boundary(real, gen)
iou = IoU_bin(real, gen)
#print ("{0}:>> P: {1}, R: {2}, F1: {3}, IoU: {4}".format(gen_p, precision, recall, F1, iou))
Ps.append(precision)
Rs.append(recall)
F1s.append(F1)
IoUs.append(iou)
# print F-score and mIOU in [0, 100] scale
print ("Avg. F: {0}".format(100.0*np.mean(F1s)))
print ("Avg. IoU: {0}".format(100.0*np.mean(IoUs)))