forked from Mhaiyang/CVPR2020_GDNet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
infer.py
105 lines (85 loc) · 3.65 KB
/
infer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
"""
@Time : 2020/3/15 20:43
@Author : TaylorMei
@E-mail : [email protected]
@Project : CVPR2020_GDNet
@File : infer.py
@Function:
"""
import os
import time
import numpy as np
import torch
from PIL import Image
from torch.autograd import Variable
from torchvision import transforms
from config import gdd_testing_root, gdd_results_root
from misc import check_mkdir, crf_refine
from gdnet import GDNet
device_ids = [0]
torch.cuda.set_device(device_ids[0])
print(f"infer starts\n")
ckpt_path = './ckpt'
exp_name = 'GDNet'
args = {
'snapshot': '200',
'scale': 416,
# 'crf': True,
'crf': False,
}
print(torch.__version__)
img_transform = transforms.Compose([
transforms.Resize((args['scale'], args['scale'])),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
])
to_test = {'GDD': gdd_testing_root}
to_pil = transforms.ToPILImage()
def main():
print(f"enter main function\n")
print(f"devcie id : {device_ids[0]}")
# net = GDNet().cuda(device_ids[0])
net = GDNet()
if len(args['snapshot']) > 0:
print(f"checking snapshots\n")
print('Load snapshot {} for testing'.format(args['snapshot']))
net.load_state_dict(torch.load(os.path.join(ckpt_path, exp_name, args['snapshot'] + '.pth')))
print('Load {} succeed!'.format(os.path.join(ckpt_path, exp_name, args['snapshot'] + '.pth')))
net.eval()
with torch.no_grad():
for name, root in to_test.items():
img_list = [img_name for img_name in os.listdir(os.path.join(root, 'image'))]
img_list.sort()
start = time.time()
for idx, img_name in enumerate(img_list):
print(f"image {img_name}")
print('predicting for {}: {:>4d} / {}'.format(name, idx + 1, len(img_list)))
check_mkdir(os.path.join(gdd_results_root, '%s_%s' % (exp_name, args['snapshot'])))
img = Image.open(os.path.join(root, 'image', img_name))
if img.mode != 'RGB':
img = img.convert('RGB')
print("{} is a gray image.".format(name))
w, h = img.size
# img_var = Variable(img_transform(img).unsqueeze(0)).cuda(device_ids[0])
img_var = Variable(img_transform(img).unsqueeze(0))
f1, f2, f3 = net(img_var)
f1 = f1.data.squeeze(0).cpu()
f2 = f2.data.squeeze(0).cpu()
f3 = f3.data.squeeze(0).cpu()
f1 = np.array(transforms.Resize((h, w))(to_pil(f1)))
f2 = np.array(transforms.Resize((h, w))(to_pil(f2)))
f3 = np.array(transforms.Resize((h, w))(to_pil(f3)))
if args['crf']:
# f1 = crf_refine(np.array(img.convert('RGB')), f1)
# f2 = crf_refine(np.array(img.convert('RGB')), f2)
f3 = crf_refine(np.array(img.convert('RGB')), f3)
# Image.fromarray(f1).save(os.path.join(ckpt_path, exp_name, '%s_%s' % (exp_name, args['snapshot']),
# img_name[:-4] + "_h.png"))
# Image.fromarray(f2).save(os.path.join(ckpt_path, exp_name, '%s_%s' % (exp_name, args['snapshot']),
# img_name[:-4] + "_l.png"))
Image.fromarray(f3).save(os.path.join(gdd_results_root, '%s_%s' % (exp_name, args['snapshot']),
img_name[:-4] + ".png"))
end = time.time()
print("Average Time Is : {:.2f}".format((end - start) / len(img_list)))
if __name__ == '__main__':
main()