-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathmain.py
475 lines (335 loc) · 15.7 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
'''
Single-GPU training code
'''
import argparse
from datetime import datetime
import numpy as np
import tensorflow as tf
import importlib
import os
import sys
import kitti_dataset
BASE_DIR = os.path.dirname(os.path.abspath(__file__))
sys.path.append(BASE_DIR)
parser = argparse.ArgumentParser()
parser.add_argument('--mode', default='train', help='train/test mode')
parser.add_argument('--gpu', type=int, default=0, help='GPU to use [default: GPU 0]')
parser.add_argument('--model', default='PWCLO_Net', help='Model name [default: PWCLO_Net]')
parser.add_argument('--data_root', default='../', help='Path to dataset directory ')
parser.add_argument('--checkpoint_path', default = None, help='Path to the saved checkpoint')
parser.add_argument('--log_dir', default='log', help='Log dir [default: log_train]')
parser.add_argument('--result_dir', default='result', help='result dir [default: result]')
parser.add_argument('--train_list', nargs='+', type=int, default=range(7), help=' List of sequences for training [default: range(7)]')
parser.add_argument('--val_list', nargs='+', type=int, default=range(11), help=' List of sequences for validation [default: range(7, 11)]')
parser.add_argument('--test_list', nargs='+', type=int, default=range(11), help='List of sequences for testing [default: range(11)]')
parser.add_argument('--num_point', type=int, default=8192, help='Point Number [default: 8192]')
parser.add_argument('--max_epoch', type=int, default=300, help='Epoch to run [default: 300]')
parser.add_argument('--batch_size', type=int, default=8, help='Batch Size during training [default: 8]')
parser.add_argument('--learning_rate', type=float, default=0.001, help='Initial learning rate [default: 0.001]')
parser.add_argument('--momentum', type=float, default=0.9, help='Initial learning rate [default: 0.9]')
parser.add_argument('--optimizer', default='adam', help='adam or momentum [default: adam]')
parser.add_argument('--decay_step', type=int, default=200000, help='Decay step for lr decay [default: 200000]')##########decay############3
parser.add_argument('--decay_rate', type=float, default=0.7, help='Decay rate for lr decay [default: 0.7]')
FLAGS = parser.parse_args()
MODE = FLAGS.mode
os.environ['CUDA_VISIBLE_DEVICES'] = str(FLAGS.gpu)
EPOCH_CNT = 0
BATCH_SIZE = FLAGS.batch_size
NUM_POINT = FLAGS.num_point
DATA = FLAGS.data_root
CHECKPOINT_PATH = FLAGS.checkpoint_path
RESULT_PATH = FLAGS.result_dir
TRAIN_LIST = FLAGS.train_list
VAL_LIST = FLAGS.val_list
TEST_LIST = FLAGS.test_list
MAX_EPOCH = FLAGS.max_epoch
BASE_LEARNING_RATE = FLAGS.learning_rate
GPU_INDEX = FLAGS.gpu
MOMENTUM = FLAGS.momentum
OPTIMIZER = FLAGS.optimizer
DECAY_STEP = FLAGS.decay_step
DECAY_RATE = FLAGS.decay_rate
MODEL = importlib.import_module(FLAGS.model) # import network module
MODEL_FILE = os.path.join(BASE_DIR, FLAGS.model+'.py')
UTIL_FILE = os.path.join(BASE_DIR, 'utils/PWCLO_util.py')
LOG_DIR = FLAGS.log_dir + datetime.now().strftime('%Y_%m_%d_%H_%M_%S')
if not os.path.exists(LOG_DIR): os.mkdir(LOG_DIR)
os.system('cp %s %s' % (UTIL_FILE, LOG_DIR)) ###SAVE THE UTIL FILE
os.system('cp %s %s' % (MODEL_FILE, LOG_DIR))
os.system('cp %s %s' % (__file__, LOG_DIR))
os.system('cp %s %s' % ('kitti_dataset.py', LOG_DIR))
LOG_FOUT = open(os.path.join(LOG_DIR, 'log_train.txt'), 'w')
LOG_FOUT.write(str(FLAGS)+'\n')
BN_INIT_DECAY = 0.5
BN_DECAY_DECAY_RATE = 0.5
BN_DECAY_DECAY_STEP = float(DECAY_STEP)
BN_DECAY_CLIP = 0.99
TRAIN_DATASET = kitti_dataset.OdometryDataset(DATA, npoints=NUM_POINT, is_training = True)
TEST_DATASET = kitti_dataset.OdometryDataset(DATA, npoints=NUM_POINT, is_training = False)
def log_string(out_str):
LOG_FOUT.write(out_str+'\n')
LOG_FOUT.flush()
print(out_str)
def get_learning_rate(batch):
learning_rate = tf.train.exponential_decay(
BASE_LEARNING_RATE, # Base learning rate.
batch * BATCH_SIZE, # Current index into the dataset.
DECAY_STEP, # Decay step.
DECAY_RATE, # Decay rate.
staircase=True)
learning_rate = tf.maximum(learning_rate, 0.00001) # CLIP THE LEARNING RATE!
return learning_rate
def get_bn_decay(batch):
bn_momentum = tf.train.exponential_decay(
BN_INIT_DECAY,
batch*BATCH_SIZE,
BN_DECAY_DECAY_STEP,
BN_DECAY_DECAY_RATE,
staircase=True)
bn_decay = tf.minimum(BN_DECAY_CLIP, 1 - bn_momentum)
return bn_decay
def main(mode = 'train'):
with tf.Graph().as_default():
with tf.device('/gpu:'+str(GPU_INDEX)):
pointclouds_pl, q_gt, t_gt = MODEL.placeholder_inputs(BATCH_SIZE, NUM_POINT)
is_training_pl = tf.placeholder(tf.bool, shape=())
batch = tf.Variable(0)
w_x = tf.Variable(0.0, trainable = True, name = 'w_x')
w_q = tf.Variable(-2.5, trainable = True, name = 'w_q')
bn_decay = get_bn_decay(batch)
tf.summary.scalar('bn_decay', bn_decay)
print("--- Get model and loss")
# Get model and loss
l0_q, l0_t, l1_q, l1_t, l2_q, l2_t, l3_q, l3_t = MODEL.get_model( pointclouds_pl, is_training_pl, bn_decay=bn_decay)
loss = MODEL.get_loss( l0_q, l0_t, l1_q, l1_t, l2_q, l2_t, l3_q, l3_t, q_gt, t_gt, w_x, w_q)
tf.summary.scalar('loss', loss)
print("--- Get training operator")
learning_rate = get_learning_rate(batch)
tf.summary.scalar('learning_rate', learning_rate)
if OPTIMIZER == 'momentum':
optimizer = tf.train.MomentumOptimizer(learning_rate, momentum=MOMENTUM)
elif OPTIMIZER == 'adam':
optimizer = tf.train.AdamOptimizer(learning_rate)
train_op = optimizer.minimize(loss, global_step=batch)
# Add ops to save and restore all the variables.
saver = tf.train.Saver()
# Create a session
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
config.allow_soft_placement = True
config.log_device_placement = False
sess = tf.Session(config=config)
# Add summary writers
merged = tf.summary.merge_all()
train_writer = tf.summary.FileWriter(os.path.join(LOG_DIR, 'train'), sess.graph)
# Init variables
if CHECKPOINT_PATH != None:
model_path = CHECKPOINT_PATH
saver.restore(sess, model_path)
log_string ("model restored")
else:
init = tf.global_variables_initializer()
sess.run(init)
log_string ("Initialize model")
ops = {'pointclouds_pl': pointclouds_pl,
'pred_q': l0_q,
'pred_t': l0_t,
'is_training_pl': is_training_pl,
'q_gt': q_gt,
't_gt': t_gt,
'loss': loss,
'train_op': train_op,
'merged': merged,
'step': batch,
}
min_eval_error = 1000.0
if mode == 'train':
for epoch in range(200, MAX_EPOCH):
log_string('**** EPOCH %03d ****' % (epoch))
sys.stdout.flush()
train_one_epoch(sess, ops, train_writer, train_list = TRAIN_LIST)
if epoch % 20 == 0 and epoch <= 100:
cur_eval_error = eval_one_epoch(sess, ops, test_list = VAL_LIST)
if cur_eval_error < min_eval_error:
min_eval_error = cur_eval_error
save_dir = os.path.join(LOG_DIR, 'epoch_' + str(epoch) + '_best_model_dir')
os.mkdir(save_dir)
save_path = saver.save(sess, os.path.join(save_dir, str(cur_eval_error)+"_t_error_model.ckpt"))
log_string("Model saved in file: %s" % save_path)
if epoch % 2 == 0 and epoch > 100:
cur_eval_error = eval_one_epoch(sess, ops, test_list = VAL_LIST)
if cur_eval_error < min_eval_error:
min_eval_error = cur_eval_error
save_dir = os.path.join(LOG_DIR, 'epoch_' + str(epoch) + '_best_model_dir')
os.mkdir(save_dir)
save_path = saver.save(sess, os.path.join(save_dir, str(cur_eval_error)+"_t_error_model.ckpt"))
log_string("Model saved in file: %s" % save_path)
elif mode == 'test':
if CHECKPOINT_PATH != None:
eval_one_epoch(sess, ops, test_list = TEST_LIST)
log_string("Finished! Please check the result directory! ")
else:
log_string('Please verify the checkpoint for testing !!!')
def get_batch(dataset, idxs, start_idx, end_idx):
bsize = end_idx-start_idx
batch_data = np.zeros((bsize, NUM_POINT*2, 3))
batch_q_gt = np.zeros((bsize, 4))
batch_t_gt = np.zeros((bsize, 3, 1))
shuffle_idx = np.arange(NUM_POINT)
np.random.shuffle(shuffle_idx)
for i in range(bsize):
pc1, pc2, q_gt, t_gt = dataset[idxs[i+start_idx]]########################################
batch_data[i,:NUM_POINT,:3] = pc1[shuffle_idx]
batch_data[i,NUM_POINT:,:3] = pc2[shuffle_idx]
batch_q_gt[i, :] = q_gt
batch_t_gt[i, :, :] = t_gt
return batch_data, batch_q_gt, batch_t_gt
def train_one_epoch(sess, ops, train_writer, train_list = range(7)):
""" ops: dict mapping from string to tf ops """
global EPOCH_CNT
is_training = True
total_num = 0
for ii in train_list:
s = [0, 4541, 5642, 10303, 11104, 11375, 14136, 15237, 16338, 20409, 22000]
e = [4541, 5642, 10303, 11104, 11375, 14136, 15237, 16338, 20409, 22000, 23201]
start = s[ii]
end = e[ii]
total_num += (end - start)
train_idxs = np.arange(total_num)
np.random.shuffle(train_idxs)
num_batches = len(train_idxs)// BATCH_SIZE
log_string(str(datetime.now()))
loss_sum = 0
for batch_idx in range(num_batches):
start_idx = batch_idx * BATCH_SIZE
end_idx = (batch_idx+1) * BATCH_SIZE
batch_data, q_gt, t_gt = get_batch(TRAIN_DATASET, train_idxs, start_idx, end_idx)
feed_dict = {ops['pointclouds_pl']: batch_data,
ops['q_gt']: q_gt,
ops['t_gt']: t_gt,
ops['is_training_pl']: is_training}
summary, step, _, loss_val = sess.run([ops['merged'], ops['step'],
ops['train_op'], ops['loss']], feed_dict = feed_dict)
train_writer.add_summary(summary, step)
loss_sum += loss_val
if (batch_idx+1)%10 == 0:
log_string(' -- %03d / %03d --' % (batch_idx+1, num_batches))
log_string('mean loss: %f' % (loss_sum / 10))
loss_sum = 0
EPOCH_CNT += 1
def eval_one_epoch(sess, ops, test_list = range(11)):
""" ops: dict mapping from string to tf ops """
global EPOCH_CNT
is_training = False
num_eval = 0
total_t_error = 0
eval_result = 0
for ii in test_list:
s = [0, 4541, 5642, 10303, 11104, 11375, 14136, 15237, 16338, 20409, 22000]
e = [4541, 5642, 10303, 11104, 11375, 14136, 15237, 16338, 20409, 22000, 23201]
start = s[ii]
end = e[ii]
test_idxs = np.arange(start, end)
num_batches = (end-start+BATCH_SIZE-1) // BATCH_SIZE
log_string(str(datetime.now()))
log_string('---- EPOCH %03d EVALUATION ----'%(EPOCH_CNT))
batch_data = np.zeros((BATCH_SIZE, NUM_POINT*2, 3))
q_gt = np.zeros([BATCH_SIZE, 4 ])
t_gt = np.zeros([BATCH_SIZE, 3, 1])
tmp = 0
for batch_idx in range(num_batches):
if batch_idx % 100 == 0:
log_string('---- batch %03d in evaluation ----'%(batch_idx))
start_idx = batch_idx * BATCH_SIZE
end_idx = min(end-start, (batch_idx+1) * BATCH_SIZE)
cur_batch_size = end_idx-start_idx
cur_batch_data, cur_q_gt, cur_t_gt = get_batch(TEST_DATASET, test_idxs, start_idx, end_idx)
if cur_batch_size == BATCH_SIZE:
batch_data = cur_batch_data
q_gt = cur_q_gt
t_gt = cur_t_gt
else:
batch_data[0:cur_batch_size] = cur_batch_data
q_gt[0:cur_batch_size] = cur_q_gt
t_gt[0:cur_batch_size] = cur_t_gt
# ---- INFERENCE BELOW ----
feed_dict = {ops['pointclouds_pl']: batch_data,
ops['q_gt']: q_gt,
ops['t_gt']: t_gt,
ops['is_training_pl']: is_training}
pred_q, pred_t = sess.run([ops['pred_q'], ops['pred_t']], feed_dict=feed_dict)
for n0 in range(cur_batch_size):
if BATCH_SIZE != 1:
q_one_batch = pred_q[n0:n0+1, :]
t_one_batch = pred_t[n0:n0+1, :]
else:
q_one_batch = pred_q
t_one_batch = pred_t
qq = np.reshape(q_one_batch, [4])
tt = np.reshape(t_one_batch, [3, 1])
RR = quat2mat(qq)
filler = np.array([0.0, 0.0, 0.0, 1.0])
filler = np.expand_dims(filler, axis = 0) ##1*4
TT = np.concatenate([np.concatenate([RR, tt], axis=-1), filler], axis=0)
if tmp == 0:
T_final = TT ### 4 4
T = T_final[ :3, : ]#### 3 4
T = T.reshape(1,1,12)
tmp += 1
else:
T_final = np.matmul(T_final, TT)
T_current = T_final[ :3, : ]
T_current = T_current.reshape(1,1,12)
T = np.append(T, T_current, axis=0)
T = T.reshape(-1, 12)
fname_txt = os.path.join(LOG_DIR, str(ii).zfill(2) + '_pred.txt')
result_dir = RESULT_PATH
if not os.path.exists(result_dir):
os.makedirs(result_dir)
np.savetxt(fname_txt, T, fmt='%.08f')
os.system('cp %s %s' % (fname_txt, result_dir)) ### SAVE THE txt FILE
result_f = os.popen("python ./evaluation.py --result_dir " + result_dir + " --eva_seqs " + str(ii).zfill(2) + "_pred", "r")
for line in result_f.readlines():
log_string(line)
if ('seq' in line):
cur_t_error = float(line.strip().split(' ')[-3])
total_t_error += cur_t_error
num_eval += 1
eval_result = total_t_error/num_eval
return eval_result
def quat2mat(q):
''' Calculate rotation matrix corresponding to quaternion
https://afni.nimh.nih.gov/pub/dist/src/pkundu/meica.libs/nibabel/quaternions.py
Parameters
----------
q : 4 element array-like
Returns
-------
M : (3,3) array
Rotation matrix corresponding to input quaternion *q*
Notes
-----
Rotation matrix applies to column vectors, and is applied to the
left of coordinate vectors. The algorithm here allows non-unit
quaternions.
References
'''
w, x, y, z = q
Nq = w*w + x*x + y*y + z*z
if Nq < 1e-8:
return np.eye(3)
s = 2.0/Nq
X = x*s
Y = y*s
Z = z*s
wX = w*X; wY = w*Y; wZ = w*Z
xX = x*X; xY = x*Y; xZ = x*Z
yY = y*Y; yZ = y*Z; zZ = z*Z
return np.array(
[[ 1.0-(yY+zZ), xY-wZ, xZ+wY ],
[ xY+wZ, 1.0-(xX+zZ), yZ-wX ],
[ xZ-wY, yZ+wX, 1.0-(xX+yY) ]])
if __name__ == "__main__":
log_string('pid: %s'%(str(os.getpid())))
main(MODE)
LOG_FOUT.close()