-
Notifications
You must be signed in to change notification settings - Fork 34
/
Copy pathtest.py
82 lines (74 loc) · 3.5 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
import os
import argparse
import torch.nn as nn
import torch
from torch.utils.data import DataLoader
import utils
from data_RGB import get_test_data
from DeepRFT_MIMO import DeepRFT as mynet
from skimage import img_as_ubyte
from get_parameter_number import get_parameter_number
from tqdm import tqdm
from layers import *
from skimage.metrics import peak_signal_noise_ratio as psnr_loss
import cv2
parser = argparse.ArgumentParser(description='Image Deblurring')
parser.add_argument('--input_dir', default='./Datasets/GoPro/test/blur', type=str, help='Directory of validation images')
parser.add_argument('--target_dir', default='./Datasets/GoPro/test/sharp', type=str, help='Directory of validation images')
parser.add_argument('--output_dir', default='./results/DeepRFT/GoPro', type=str, help='Directory of validation images')
parser.add_argument('--weights', default='./checkpoints/DeepRFT/model_GoPro.pth', type=str, help='Path to weights')
parser.add_argument('--get_psnr', default=False, type=bool, help='PSNR')
parser.add_argument('--gpus', default='0', type=str, help='CUDA_VISIBLE_DEVICES')
parser.add_argument('--save_result', default=False, type=bool, help='save result')
parser.add_argument('--win_size', default=256, type=int, help='window size, [GoPro, HIDE, RealBlur]=256, [DPDD]=512')
parser.add_argument('--num_res', default=8, type=int, help='num of resblocks, [Small, Med, PLus]=[4, 8, 20]')
args = parser.parse_args()
result_dir = args.output_dir
win = args.win_size
get_psnr = args.get_psnr
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
os.environ["CUDA_VISIBLE_DEVICES"] = args.gpus
# model_restoration = mynet()
model_restoration = mynet(num_res=args.num_res, inference=True)
# print number of model
get_parameter_number(model_restoration)
# utils.load_checkpoint(model_restoration, args.weights)
utils.load_checkpoint_compress_doconv(model_restoration, args.weights)
print("===>Testing using weights: ", args.weights)
model_restoration.cuda()
model_restoration = nn.DataParallel(model_restoration)
model_restoration.eval()
# dataset = args.dataset
rgb_dir_test = args.input_dir
test_dataset = get_test_data(rgb_dir_test, img_options={})
test_loader = DataLoader(dataset=test_dataset, batch_size=1, shuffle=False, num_workers=4, drop_last=False, pin_memory=True)
psnr_val_rgb = []
psnr = 0
utils.mkdir(result_dir)
with torch.no_grad():
psnr_list = []
ssim_list = []
for ii, data_test in enumerate(tqdm(test_loader), 0):
torch.cuda.ipc_collect()
torch.cuda.empty_cache()
input_ = data_test[0].cuda()
filenames = data_test[1]
_, _, Hx, Wx = input_.shape
filenames = data_test[1]
input_re, batch_list = window_partitionx(input_, win)
restored = model_restoration(input_re)
restored = window_reversex(restored, win, Hx, Wx, batch_list)
restored = torch.clamp(restored, 0, 1)
restored = restored.permute(0, 2, 3, 1).cpu().detach().numpy()
for batch in range(len(restored)):
restored_img = restored[batch]
restored_img = img_as_ubyte(restored[batch])
if get_psnr:
rgb_gt = cv2.imread(os.path.join(args.target_dir, filenames[batch]+'.png'))
rgb_gt = cv2.cvtColor(rgb_gt, cv2.COLOR_BGR2RGB)
psnr_val_rgb.append(psnr_loss(restored_img, rgb_gt))
if args.save_result:
utils.save_img((os.path.join(result_dir, filenames[batch]+'.png')), restored_img)
if get_psnr:
psnr = sum(psnr_val_rgb) / len(test_dataset)
print("PSNR: %f" % psnr)