-
Notifications
You must be signed in to change notification settings - Fork 1
/
pass1.mac
14957 lines (13198 loc) · 417 KB
/
pass1.mac
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
; Copyright 1998-2011 - Mersenne Research, Inc. All rights reserved
; Author: George Woltman
; Email: [email protected]
;
; These macros do the first pass of two-pass FFTs.
;
; ********************************************************
; ********************************************************
; ******************* PASS 1 MACROS ********************
; ********************************************************
; ********************************************************
;;***********************************************************************
;; Pass 1 macros
;;
;; p2cl = number of cache lines in a pass 2 block
;; clm = cache line multiplier (num cache lines processed each iteration)
;;***********************************************************************
;; Perform a 5K-element FFT. This is done in two passes. Pass 1
;; does 5 levels, pass 2 uses common code to perform the last 8 levels.
pass1levels5pfa5 MACRO pass2_macro, p2cl, clm
LOCAL b0b, b1b, b2b, b3b, c0b, c1b, c2b, c3b
LOCAL pass2, no_fft, more, fftdn, fftdn1
;; Call FFT code unless the FFT has already been started
clear_timers
cmp DWORD PTR [esi-28][ebx], 0 ;; Test FFT-started flag
jne pass2 ;; Jump is FFT already started
mov norm_ptr1, 0 ;; Set FFT-ing flag
mov edx, p2cl/128*65536+128/clm*256;; Load loop counter
copy_7_words
jmp b0b ;; Do the pass 1 fft
;; Do the last 8 FFT levels
;; do 1 pass2_8_levels_real and 9 pass2_8_levels_complex
pass2: start_timer 0
CALLP pass2_macro
end_timer 0
cmp ffttype, 1 ;; We're done if FFTing only
je gw_finish_fft
;; Do the inverse FFT
start_timer 1
fldz ;; Init SUMOUT
fstp SUMOUT
mov edx, norm_biglit_array ;; Addr of the big/little flags array
mov norm_ptr1, edx ;; Save ptr
mov edx, norm_col_mults ;; Addr of the column multipliers
mov norm_ptr2, edx ;; Save ptr
mov edx, p2cl/128*65536+128/clm*256;; Load loop counter
;; Do inverse FFT levels 4,5
;; On input the 32-byte cache lines hold these data values:
;; 0 256 1 257
;; 512 ...
;; ...
;; On output the 32-byte cache lines hold these data values:
;; 0 512 1 513
;; 256 ...
;; 1K ...
;; ...
;; Do 1 four_real_unfft macros
;; distance between fft data elements is 1
;; For better pipelining we call eight_reals_unfft_2 which works
;; on two sets of four_reals at the same time.
c0b: start_timer 18
c2b: disp eight_reals_unfft_2, dist1, 8, blkdst
lea esi, [esi+2*dist1] ;; Next source pointer
loopclm dl, clm, c2b
lea esi, [esi-clm*2*dist1+2*blkdst];; Next source pointer
;; Do 2 four_complex_unfft macros
;; distance between fft data elements is 1
mov edi, sincos1 ;; Load sin/cos pointer
mov al, 2 ;; 2 iterations
c3b: disp four_complex_unfft, 8, blkdst, 2*blkdst
lea esi, [esi+dist1] ;; Next source pointer
add dl, 256/2/clm ;; Test loop counter
jnc c3b ;; Iterate if necessary
lea esi, [esi-clm*2*dist1+4*blkdst];; Next source pointer
lea edi, [edi+SCD] ;; Next sine/cosine pointer
dec al ;; Test outer loop counter
jnz c3b ;; Iterate if necessary
lea esi, [esi-2*4*blkdst-2*blkdst];; Restore source pointer
end_timer 18
;; Do inverse FFT levels 1,2,3
;; On input the 32-byte cache lines hold these data values:
;; 0 512 1 513
;; 256 ...
;; 1K ...
;; ...
;; On output the 32-byte cache lines hold these data values:
;; 0 2.5K 1 3K+1
;; 256
;; ...
;; 3K-256
;; Do 4 five_reals_last_unfft macros
;; distance between fft data elements is 4
start_timer 19
mov al, 2 ;; Load loop counter
c1b: two_five_reals_last_unfft 8, 2*blkdst
lea esi, [esi+dist1] ;; Next source pointer
add al, 256/2 ;; Test loop counter
jnc c1b ;; Iterate if necessary
IFDEF PFETCH
prefetcht1 [esi-32+clm*32]
; prefetcht1 [esi-32+clm*32+2*blkdst]
prefetcht1 [esi-32+clm*32+4*blkdst]
; prefetcht1 [esi-32+clm*32+6*blkdst]
prefetcht1 [esi-32+clm*32+8*blkdst]
ENDIF
loopclm dl, clm, c1b
lea esi, [esi-clm*2*dist1+blkdst];; Next source pointer
dec al ;; Test loop counter
jnz c1b ;; Iterate if necessary
lea esi, [esi-2*blkdst] ;; Restore source pointer
end_timer 19
;; Normalize these values
start_timer 20
mov eax, NORMRTN ;; Addr of normalization routine
call eax
sub eax, eax
end_timer 20
;; Have we been given permission to start the FFT on the result?
;; If so, do so now while the data is in the L2 cache.
cmp POSTFFT, 0 ;; Test flag
je no_fft ;; Skip FFT code if flag not set
cmp edx, p2cl/128*65536+(128/clm-4/clm)*256;; Delay fft on 8 sets
jg no_fft ;; Jump if delaying FFT
copy_3_words clm, 0
;; Do FFT levels 1,2,3
;;
;; On input the 32-byte cache lines hold these data values:
;; 0 2.5K 1 2.5K+1
;; 256
;; ...
;; 2.5K-256
;; On output the 32-byte cache lines hold these data values:
;; 0 512 1 513
;; 256 ...
;; 1K ...
;; ...
;; Do 4 five_reals_first_fft macros
;; distance between fft data elements is 4
b0b: start_timer 21
mov ebx, DIST_TO_FFTSRCARG
mov al, 2 ;; 4 iterations
b1b: two_five_reals_first_fft 2*blkdst, 8
lea esi, [esi+dist1] ;; Next source pointer
add dl, 256/2/clm ;; Test loop counter
jnc b1b ;; Iterate if necessary
lea esi, [esi-clm*2*dist1+blkdst];; Next source pointer
dec al ;; Test loop counter
jnz b1b ;; Iterate if necessary
lea esi, [esi-2*blkdst] ;; Restore source pointer
end_timer 21
;; Do FFT levels 4,5
;;
;; On input the 32-byte cache lines hold these data values:
;; 0 512 1 513
;; 256 ...
;; 1K ...
;; ...
;; On output the 32-byte cache lines hold these data values:
;; 0 256 1 257
;; 512 ...
;; ...
;; Do 1 four_real_fft macros
;; distance between fft data elements is 1
;; For better pipelining we call eight_reals_fft_2 which works
;; on two sets of four_reals at the same time.
start_timer 22
b2b: disp eight_reals_fft_2, dist1, blkdst, 8
lea esi, [esi+2*dist1] ;; Next source pointer
IFDEF PFETCH
; prefetcht1 [esi-32+clm*32]
prefetcht1 [esi-32+clm*32+blkdst]
ENDIF
loopclm dl, clm, b2b
lea esi, [esi-clm*2*dist1+2*blkdst];; Next source pointer
;; Do 2 four_complex_fft macros
;; distance between fft data elements is 1
mov edi, sincos1 ;; Load sin/cos pointer
mov al, 2 ;; 2 iterations
b3b: disp four_complex_fft, blkdst, 2*blkdst, 8
lea esi, [esi+dist1] ;; Next source pointer
add al, 256/2 ;; Test inner loop counter
jnc b3b ;; Iterate if necessary
IFDEF PFETCH
; prefetcht1 [esi-32+clm*32]
prefetcht1 [esi-32+clm*32+blkdst]
; prefetcht1 [esi-32+clm*32+2*blkdst]
prefetcht1 [esi-32+clm*32+3*blkdst]
ENDIF
loopclm dl, clm, b3b
lea esi, [esi-clm*2*dist1+4*blkdst];; Next source pointer
lea edi, [edi+SCD] ;; Next sine/cosine pointer
dec al
jnz b3b
lea esi, [esi-2*4*blkdst-2*blkdst];; Restore source pointer
end_timer 22
;; Work on next 4 sets of 32 values
no_fft: lea esi, [esi+clm*2*dist1] ;; Next source pointer
dec dh ;; Test loop counter
jnz short more ;; Do more FFTs
lea esi, [esi+64] ;; Skip pad every 128 cache lines (4KB)
sub edx, 65536 ;; Test loop counter
jz short fftdn ;; Jump if done looping
mov dh, 128/clm ;; Restore cache line counter
more: cmp norm_ptr1, 0 ;; What was the loop start point?
jne c0b ;; Do inverse-FFT/norm/FFT iteration
jmp b0b ;; Do another FFT-only iteration
fftdn: lea esi, [esi-p2cl*2*dist1-p2cl/128*64];; Restore source pointer
cmp esi, DESTARG ;; If esi was not restored, then we
jne short fftdn1 ;; just finished skipped postfft data
sub ebx, ebx
mov DIST_TO_FFTSRCARG, ebx
cmp norm_ptr1, 0 ;; What was the loop start point?
je pass2 ;; FFT-only, go do pass 2
;; Split the carries into high and low carries (so they do not exceed
;; the desired number of bits per FFT word. Then add the carries back to the
;; FFT data.
start_timer 28
call gw_carries
end_timer 28
;; Have we been given permission to start the FFT on the result?
;; If so, set loop to FFT the first few cache lines now that the carries
;; have been added in.
cmp POSTFFT, 0 ;; Test flag
je short fftdn1 ;; Skip FFT code if flag not set
mov esi, DESTARG ;; Load FFT data address
mov edx, 65536+4/clm*256 ;; Do 8 previously skipped cache lines
mov norm_ptr1, 0 ;; Set flag so only forward FFT is done
copy_4_words
jmp b0b
;; Now add in the FFT'ed carries, cleanup and return
fftdn1: end_timer 1
jmp gw_finish_mult
ENDM
;; Perform a 6K-element FFT. This is done in two passes. Pass 1
;; does 5 levels, pass 2 uses common code to perform the last 8 levels.
pass1levels5pfa6 MACRO pass2_macro, p2cl, clm
LOCAL b0b, b1b, b2b, b3b, c0b, c1b, c2b, c3b
LOCAL pass2, no_fft, more, fftdn, fftdn1
;; Call FFT code unless the FFT has already been started
clear_timers
cmp DWORD PTR [esi-28][ebx], 0 ;; Test FFT-started flag
jne pass2 ;; Jump is FFT already started
mov norm_ptr1, 0 ;; Set FFT-ing flag
mov edx, p2cl/128*65536+128/clm*256;; Load loop counter
copy_7_words
jmp b0b ;; Do the pass 1 fft
;; Do the last 8 FFT levels
;; do 1 pass2_8_levels_real and 11 pass2_8_levels_complex
pass2: start_timer 0
CALLP pass2_macro
end_timer 0
cmp ffttype, 1 ;; We're done if FFTing only
je gw_finish_fft
;; Do the inverse FFT
start_timer 1
fldz ;; Init SUMOUT
fstp SUMOUT
mov edx, norm_biglit_array ;; Addr of the big/little flags array
mov norm_ptr1, edx ;; Save ptr
mov edx, norm_col_mults ;; Addr of the column multipliers
mov norm_ptr2, edx ;; Save ptr
mov edx, p2cl/128*65536+128/clm*256;; Load loop counter
;; Do inverse FFT levels 4,5
;; On input the 32-byte cache lines hold these data values:
;; 0 256 1 257
;; 512 ...
;; ...
;; On output the 32-byte cache lines hold these data values:
;; 0 1K 1 1K+1
;; 256 ...
;; ...
;; 2K ...
;; ...
;; Do 1 four_real_four_semireal_unfft macros
;; distance between fft data elements is 1
c0b: start_timer 18
c2b: disp four_real_four_semireal_unfft, 8, blkdst, 2*blkdst
lea esi, [esi+dist1] ;; Next source pointer
add dl, 256/2/clm ;; Test inner loop counter
jnc c2b ;; Iterate if necessary
lea esi, [esi-clm*2*dist1+4*blkdst];; Next source pointer
;; Do 2 four_complex_unfft macros
;; distance between fft data elements is 1
mov edi, sincos1 ;; Load sin/cos pointer
mov al, 2 ;; 2 iterations
c3b: disp four_complex_unfft, 8, blkdst, 2*blkdst
lea esi, [esi+dist1] ;; Next source pointer
add dl, 256/2/clm ;; Test loop counter
jnc c3b ;; Iterate if necessary
lea esi, [esi-clm*2*dist1+4*blkdst];; Next source pointer
lea edi, [edi+SCD] ;; Next sine/cosine pointer
dec al ;; Test outer loop counter
jnz c3b ;; Iterate if necessary
lea esi, [esi-3*4*blkdst] ;; Restore source pointer
end_timer 18
;; Do inverse FFT levels 1,2,3
;; On input the 32-byte cache lines hold these data values:
;; 0 1K 1 1K+1
;; 256 ...
;; ...
;; 2K ...
;; ...
;; On output the 32-byte cache lines hold these data values:
;; 0 3K 1 3K+1
;; 256
;; ...
;; 3K-256
;; Do 4 six_reals_last_unfft macros
;; distance between fft data elements is 4
start_timer 19
mov al, 4 ;; Load loop counter
c1b: disp six_reals_last_unfft, 8, 4*blkdst, 8*blkdst
lea esi, [esi+dist1] ;; Next source pointer
add al, 256/2 ;; Test loop counter
jnc c1b ;; Iterate if necessary
IFDEF PFETCH
prefetcht1 [esi-32+clm*32]
; prefetcht1 [esi-32+clm*32+4*blkdst]
prefetcht1 [esi-32+clm*32+8*blkdst]
ENDIF
loopclm dl, clm, c1b
lea esi, [esi-clm*2*dist1+blkdst];; Next source pointer
dec al ;; Test loop counter
jnz c1b ;; Iterate if necessary
lea esi, [esi-4*blkdst] ;; Restore source pointer
end_timer 19
;; Normalize these values
start_timer 20
mov eax, NORMRTN ;; Addr of normalization routine
call eax
sub eax, eax
end_timer 20
;; Have we been given permission to start the FFT on the result?
;; If so, do so now while the data is in the L2 cache.
cmp POSTFFT, 0 ;; Test flag
je no_fft ;; Skip FFT code if flag not set
cmp edx, p2cl/128*65536+(128/clm-4/clm)*256;; Delay fft on 8 sets
jg no_fft ;; Jump if delaying FFT
copy_3_words clm, 0
;; Do FFT levels 1,2,3
;;
;; On input the 32-byte cache lines hold these data values:
;; 0 3K 1 3K+1
;; 256
;; ...
;; 3K-256
;; On output the 32-byte cache lines hold these data values:
;; 0 1K 1 1K+1
;; 256 ...
;; ...
;; 2K ...
;; ...
;; Do 4 six_reals_first_fft macros
;; distance between fft data elements is 4
b0b: start_timer 21
mov ebx, DIST_TO_FFTSRCARG
mov al, 4 ;; 4 iterations
b1b: disp six_reals_first_fft, 4*blkdst, 8*blkdst, 8
lea esi, [esi+dist1] ;; Next source pointer
add dl, 256/2/clm ;; Test loop counter
jnc b1b ;; Iterate if necessary
lea esi, [esi-clm*2*dist1+blkdst];; Next source pointer
dec al ;; Test loop counter
jnz b1b ;; Iterate if necessary
lea esi, [esi-4*blkdst] ;; Restore source pointer
end_timer 21
;; Do FFT levels 4,5
;;
;; On input the 32-byte cache lines hold these data values:
;; 0 1K 1 1K+1
;; 256 ...
;; ...
;; 2K ...
;; ...
;; On output the 32-byte cache lines hold these data values:
;; 0 256 1 257
;; 512 ...
;; ...
;; Do 1 four_real_four_semireal_fft macros
;; distance between fft data elements is 1
start_timer 22
b2b: disp four_real_four_semireal_fft, blkdst, 2*blkdst, 8
lea esi, [esi+dist1] ;; Next source pointer
add al, 256/2 ;; Test inner loop counter
jnc b2b ;; Iterate if necessary
IFDEF PFETCH
; prefetcht1 [esi-32+clm*32]
prefetcht1 [esi-32+clm*32+blkdst]
; prefetcht1 [esi-32+clm*32+2*blkdst]
prefetcht1 [esi-32+clm*32+3*blkdst]
ENDIF
loopclm dl, clm, b2b
lea esi, [esi-clm*2*dist1+4*blkdst];; Next source pointer
;; Do 2 four_complex_fft macros
;; distance between fft data elements is 1
mov edi, sincos1 ;; Load sin/cos pointer
mov al, 2 ;; 2 iterations
b3b: disp four_complex_fft, blkdst, 2*blkdst, 8
lea esi, [esi+dist1] ;; Next source pointer
add al, 256/2 ;; Test inner loop counter
jnc b3b ;; Iterate if necessary
IFDEF PFETCH
; prefetcht1 [esi-32+clm*32]
prefetcht1 [esi-32+clm*32+blkdst]
; prefetcht1 [esi-32+clm*32+2*blkdst]
prefetcht1 [esi-32+clm*32+3*blkdst]
ENDIF
loopclm dl, clm, b3b
lea esi, [esi-clm*2*dist1+4*blkdst];; Next source pointer
lea edi, [edi+SCD] ;; Next sine/cosine pointer
dec al
jnz b3b
lea esi, [esi-3*4*blkdst] ;; Restore source pointer
end_timer 22
;; Work on next 4 sets of 32 values
no_fft: lea esi, [esi+clm*2*dist1] ;; Next source pointer
dec dh ;; Test loop counter
jnz short more ;; Do more FFTs
lea esi, [esi+64] ;; Skip pad every 128 cache lines (4KB)
sub edx, 65536 ;; Test loop counter
jz short fftdn ;; Jump if done looping
mov dh, 128/clm ;; Restore cache line counter
more: cmp norm_ptr1, 0 ;; What was the loop start point?
jne c0b ;; Do inverse-FFT/norm/FFT iteration
jmp b0b ;; Do another FFT-only iteration
fftdn: lea esi, [esi-p2cl*2*dist1-p2cl/128*64];; Restore source pointer
cmp esi, DESTARG ;; If esi was not restored, then we
jne short fftdn1 ;; just finished skipped postfft data
sub ebx, ebx
mov DIST_TO_FFTSRCARG, ebx
cmp norm_ptr1, 0 ;; What was the loop start point?
je pass2 ;; FFT-only, go do pass 2
;; Split the carries into high and low carries (so they do not exceed
;; the desired number of bits per FFT word. Then add the carries back to the
;; FFT data.
start_timer 28
call gw_carries
end_timer 28
;; Have we been given permission to start the FFT on the result?
;; If so, set loop to FFT the first few cache lines now that the carries
;; have been added in.
cmp POSTFFT, 0 ;; Test flag
je short fftdn1 ;; Skip FFT code if flag not set
mov esi, DESTARG ;; Load FFT data address
mov edx, 65536+4/clm*256 ;; Do 8 previously skipped cache lines
mov norm_ptr1, 0 ;; Set flag so only forward FFT is done
copy_4_words
jmp b0b
;; Now add in the FFT'ed carries, cleanup and return
fftdn1: end_timer 1
jmp gw_finish_mult
ENDM
;; Perform a 6K-element all-complex FFT. This is done in two passes. Pass 1
;; does 5 levels, pass 2 uses common code to perform the last 8 levels.
pass1levels5complex3 MACRO pass2_macro, p2cl, clm
LOCAL b0b, b1b, b3b, c0b, c1b, c3b
LOCAL pass2, no_fft, more, fftdn, fftdn1
;; Call FFT code unless the FFT has already been started
clear_timers
cmp DWORD PTR [esi-28][ebx], 0 ;; Test FFT-started flag
jne pass2 ;; Jump is FFT already started
mov norm_ptr1, 0 ;; Set FFT-ing flag
mov edx, p2cl/128*65536+128/clm*256;; Load loop counter
copy_7_words
jmp b0b ;; Do the pass 1 fft
;; Do the last 8 FFT levels
;; do 12 pass2_8_levels_complex
pass2: start_timer 0
CALLP pass2_macro
end_timer 0
cmp ffttype, 1 ;; We're done if FFTing only
je gw_finish_fft
;; Do the inverse FFT
start_timer 1
fldz ;; Init SUMOUT
fstp SUMOUT
mov edx, norm_biglit_array ;; Addr of the big/little flags array
mov norm_ptr1, edx ;; Save ptr
mov edx, norm_col_mults ;; Addr of the column multipliers
mov norm_ptr2, edx ;; Save ptr
mov edx, p2cl/128*65536+128/clm*256;; Load loop counter
;; Do inverse FFT levels 4,5
;; On input the 32-byte cache lines hold these data values:
;; 0 256 1 257
;; 512 ...
;; ...
;; On output the 32-byte cache lines hold these data values:
;; 0 1K 1 1K+1
;; 256 ...
;; ...
;; 2K ...
;; ...
;; Do 3 four_complex_unfft macros
;; distance between fft data elements is 1
c0b: start_timer 18
mov edi, sincos1 ;; Load sin/cos pointer
mov al, 3 ;; 3 iterations
c3b: disp four_complex_unfft, 8, blkdst, 2*blkdst
lea esi, [esi+dist1] ;; Next source pointer
add dl, 256/2/clm ;; Test loop counter
jnc c3b ;; Iterate if necessary
lea esi, [esi-clm*2*dist1+4*blkdst];; Next source pointer
lea edi, [edi+SCD] ;; Next sine/cosine pointer
dec al ;; Test outer loop counter
jnz c3b ;; Iterate if necessary
lea esi, [esi-3*4*blkdst] ;; Restore source pointer
end_timer 18
;; Do inverse FFT levels 1,2,3
;; On input the 32-byte cache lines hold these data values:
;; 0 1K 1 1K+1
;; 256 ...
;; ...
;; 2K ...
;; ...
;; On output the 32-byte cache lines hold these data values:
;; 0 3K 1 3K+1
;; 256
;; ...
;; 3K-256
;; Do 4 three_complex_last_unfft macros
;; distance between fft data elements is 4
start_timer 19
mov edi, plus1_premults ;; Address of premultiplier table
mov al, 4 ;; Load loop counter
c1b: three_complex_last_unfft 8, 4*blkdst, 8*blkdst
lea esi, [esi+dist1] ;; Next source pointer
add al, 256/2 ;; Test loop counter
jnc c1b ;; Iterate if necessary
IFDEF PFETCH
prefetcht1 [esi-32+clm*32]
; prefetcht1 [esi-32+clm*32+4*blkdst]
prefetcht1 [esi-32+clm*32+8*blkdst]
ENDIF
loopclm dl, clm, c1b
lea esi, [esi-clm*2*dist1+blkdst];; Next source pointer
lea edi, [edi+48] ;; Next premultiplier pointer
dec al ;; Test loop counter
jnz c1b ;; Iterate if necessary
lea esi, [esi-4*blkdst] ;; Restore source pointer
end_timer 19
;; Normalize these values
start_timer 20
mov eax, NORMRTN ;; Addr of normalization routine
call eax
sub eax, eax
end_timer 20
;; Have we been given permission to start the FFT on the result?
;; If so, do so now while the data is in the L2 cache.
cmp POSTFFT, 0 ;; Test flag
je no_fft ;; Skip FFT code if flag not set
cmp edx, p2cl/128*65536+(128/clm-4/clm)*256;; Delay fft on 8 sets
jg no_fft ;; Jump if delaying FFT
copy_3_words clm, 0
;; Do FFT levels 1,2,3
;;
;; On input the 32-byte cache lines hold these data values:
;; 0 3K 1 3K+1
;; 256
;; ...
;; 3K-256
;; On output the 32-byte cache lines hold these data values:
;; 0 1K 1 1K+1
;; 256 ...
;; ...
;; 2K ...
;; ...
;; Do 4 three_complex_first_fft macros
;; distance between fft data elements is 4
b0b: start_timer 21
mov ebx, DIST_TO_FFTSRCARG
mov edi, plus1_premults ;; Address of premultiplier table
mov al, 4 ;; 4 iterations
b1b: three_complex_first_fft 4*blkdst, 8*blkdst, 8
lea esi, [esi+dist1] ;; Next source pointer
add dl, 256/2/clm ;; Test loop counter
jnc b1b ;; Iterate if necessary
lea esi, [esi-clm*2*dist1+blkdst];; Next source pointer
lea edi, [edi+48] ;; Next premultiplier pointer
dec al ;; Test loop counter
jnz b1b ;; Iterate if necessary
lea esi, [esi-4*blkdst] ;; Restore source pointer
end_timer 21
;; Do FFT levels 4,5
;;
;; On input the 32-byte cache lines hold these data values:
;; 0 1K 1 1K+1
;; 256 ...
;; ...
;; 2K ...
;; ...
;; On output the 32-byte cache lines hold these data values:
;; 0 256 1 257
;; 512 ...
;; ...
;; Do 3 four_complex_fft macros
;; distance between fft data elements is 1
start_timer 22
mov edi, sincos1 ;; Load sin/cos pointer
mov al, 3 ;; 3 iterations
b3b: disp four_complex_fft, blkdst, 2*blkdst, 8
lea esi, [esi+dist1] ;; Next source pointer
add al, 256/2 ;; Test inner loop counter
jnc b3b ;; Iterate if necessary
IFDEF PFETCH
; prefetcht1 [esi-32+clm*32]
prefetcht1 [esi-32+clm*32+blkdst]
; prefetcht1 [esi-32+clm*32+2*blkdst]
prefetcht1 [esi-32+clm*32+3*blkdst]
ENDIF
loopclm dl, clm, b3b
lea esi, [esi-clm*2*dist1+4*blkdst];; Next source pointer
lea edi, [edi+SCD] ;; Next sine/cosine pointer
dec al
jnz b3b
lea esi, [esi-3*4*blkdst] ;; Restore source pointer
end_timer 22
;; Work on next 4 sets of 32 values
no_fft: lea esi, [esi+clm*2*dist1] ;; Next source pointer
dec dh ;; Test loop counter
jnz short more ;; Do more FFTs
lea esi, [esi+64] ;; Skip pad every 128 cache lines (4KB)
sub edx, 65536 ;; Test loop counter
jz short fftdn ;; Jump if done looping
mov dh, 128/clm ;; Restore cache line counter
more: cmp norm_ptr1, 0 ;; What was the loop start point?
jne c0b ;; Do inverse-FFT/norm/FFT iteration
jmp b0b ;; Do another FFT-only iteration
fftdn: lea esi, [esi-p2cl*2*dist1-p2cl/128*64];; Restore source pointer
cmp esi, DESTARG ;; If esi was not restored, then we
jne short fftdn1 ;; just finished skipped postfft data
sub ebx, ebx
mov DIST_TO_FFTSRCARG, ebx
cmp norm_ptr1, 0 ;; What was the loop start point?
je pass2 ;; FFT-only, go do pass 2
;; Split the carries into high and low carries (so they do not exceed
;; the desired number of bits per FFT word. Then add the carries back to the
;; FFT data.
start_timer 28
call gw_carries
end_timer 28
;; Have we been given permission to start the FFT on the result?
;; If so, set loop to FFT the first few cache lines now that the carries
;; have been added in.
cmp POSTFFT, 0 ;; Test flag
je short fftdn1 ;; Skip FFT code if flag not set
mov esi, DESTARG ;; Load FFT data address
mov edx, 65536+4/clm*256 ;; Do 8 previously skipped cache lines
mov norm_ptr1, 0 ;; Set flag so only forward FFT is done
copy_4_words
jmp b0b
;; Now add in the FFT'ed carries, cleanup and return
fftdn1: end_timer 1
jmp gw_finish_mult
ENDM
;; Perform a 7K-element FFT. This is done in two passes. Pass 1
;; does 5 levels, pass 2 uses common code to perform the last 8 levels.
pass1levels5pfa7 MACRO pass2_macro, p2cl, clm
LOCAL b0b, b1b, b2b, b3b, c0b, c1b, c2b, c3b
LOCAL pass2, no_fft, more, fftdn, fftdn1
;; Call FFT code unless the FFT has already been started
clear_timers
cmp DWORD PTR [esi-28][ebx], 0 ;; Test FFT-started flag
jne pass2 ;; Jump is FFT already started
mov norm_ptr1, 0 ;; Set FFT-ing flag
mov edx, p2cl/128*65536+128/clm*256;; Load loop counter
copy_7_words
jmp b0b ;; Do the pass 1 fft
;; Do the last 8 FFT levels
;; do 1 pass2_8_levels_real and 13 pass2_8_levels_complex
pass2: start_timer 0
CALLP pass2_macro
end_timer 0
cmp ffttype, 1 ;; We're done if FFTing only
je gw_finish_fft
;; Do the inverse FFT
start_timer 1
fldz ;; Init SUMOUT
fstp SUMOUT
mov edx, norm_biglit_array ;; Addr of the big/little flags array
mov norm_ptr1, edx ;; Save ptr
mov edx, norm_col_mults ;; Addr of the column multipliers
mov norm_ptr2, edx ;; Save ptr
mov edx, p2cl/128*65536+128/clm*256;; Load loop counter
;; Do inverse FFT levels 4,5
;; On input the 32-byte cache lines hold these data values:
;; 0 256 1 257
;; 512 ...
;; ...
;; On output the 32-byte cache lines hold these data values:
;; 0 512 1 513
;; 256 ...
;; 1K ...
;; ...
;; Do 1 four_real_unfft macros
;; distance between fft data elements is 1
;; For better pipelining we call eight_reals_unfft_2 which works
;; on two sets of four_reals at the same time.
c0b: start_timer 18
c2b: disp eight_reals_unfft_2, dist1, 8, blkdst
lea esi, [esi+2*dist1] ;; Next source pointer
loopclm dl, clm, c2b
lea esi, [esi-clm*2*dist1+2*blkdst];; Next source pointer
;; Do 3 four_complex_unfft macros
;; distance between fft data elements is 1
mov edi, sincos1 ;; Load sin/cos pointer
mov al, 3 ;; 2 iterations
c3b: disp four_complex_unfft, 8, blkdst, 2*blkdst
lea esi, [esi+dist1] ;; Next source pointer
add dl, 256/2/clm ;; Test loop counter
jnc c3b ;; Iterate if necessary
lea esi, [esi-clm*2*dist1+4*blkdst];; Next source pointer
lea edi, [edi+SCD] ;; Next sine/cosine pointer
dec al ;; Test outer loop counter
jnz c3b ;; Iterate if necessary
lea esi, [esi-3*4*blkdst-2*blkdst];; Restore source pointer
end_timer 18
;; Do inverse FFT levels 1,2,3
;; On input the 32-byte cache lines hold these data values:
;; 0 512 1 513
;; 256 ...
;; 1K ...
;; ...
;; On output the 32-byte cache lines hold these data values:
;; 0 3.5K 1 3.5K+1
;; 256
;; ...
;; 3.5K-256
;; Do 4 seven_reals_last_unfft macros
;; distance between fft data elements is 4
start_timer 19
mov al, 2 ;; Load loop counter
c1b: two_seven_reals_last_unfft 8, 2*blkdst
lea esi, [esi+dist1] ;; Next source pointer
add al, 256/2 ;; Test loop counter
jnc c1b ;; Iterate if necessary
IFDEF PFETCH
prefetcht1 [esi-32+clm*32]
; prefetcht1 [esi-32+clm*32+2*blkdst]
prefetcht1 [esi-32+clm*32+4*blkdst]
; prefetcht1 [esi-32+clm*32+6*blkdst]
prefetcht1 [esi-32+clm*32+8*blkdst]
; prefetcht1 [esi-32+clm*32+10*blkdst]
prefetcht1 [esi-32+clm*32+12*blkdst]
ENDIF
loopclm dl, clm, c1b
lea esi, [esi-clm*2*dist1+blkdst];; Next source pointer
dec al ;; Test loop counter
jnz c1b ;; Iterate if necessary
lea esi, [esi-2*blkdst] ;; Restore source pointer
end_timer 19
;; Normalize these values
start_timer 20
mov eax, NORMRTN ;; Addr of normalization routine
call eax
sub eax, eax
end_timer 20
;; Have we been given permission to start the FFT on the result?
;; If so, do so now while the data is in the L2 cache.
cmp POSTFFT, 0 ;; Test flag
je no_fft ;; Skip FFT code if flag not set
cmp edx, p2cl/128*65536+(128/clm-4/clm)*256;; Delay fft on 8 sets
jg no_fft ;; Jump if delaying FFT
copy_3_words clm, 0
;; Do FFT levels 1,2,3
;;
;; On input the 32-byte cache lines hold these data values:
;; 0 3.5K 1 3.5K+1
;; 256
;; ...
;; 3.5K-256
;; On output the 32-byte cache lines hold these data values:
;; 0 512 1 513
;; 256 ...
;; 1K ...
;; ...
;; Do 4 seven_reals_first_fft macros
;; distance between fft data elements is 4
b0b: start_timer 21
mov ebx, DIST_TO_FFTSRCARG
mov al, 2 ;; 4 iterations
b1b: two_seven_reals_first_fft 2*blkdst, 8
lea esi, [esi+dist1] ;; Next source pointer
add dl, 256/2/clm ;; Test loop counter
jnc b1b ;; Iterate if necessary
lea esi, [esi-clm*2*dist1+blkdst];; Next source pointer
dec al ;; Test loop counter
jnz b1b ;; Iterate if necessary
lea esi, [esi-2*blkdst] ;; Restore source pointer
end_timer 21
;; Do FFT levels 4,5
;;
;; On input the 32-byte cache lines hold these data values:
;; 0 512 1 513
;; 256 ...
;; 1K ...
;; ...
;; On output the 32-byte cache lines hold these data values:
;; 0 256 1 257
;; 512 ...
;; ...
;; Do 1 four_real_fft macros
;; distance between fft data elements is 1
;; For better pipelining we call eight_reals_fft_2 which works
;; on two sets of four_reals at the same time.
start_timer 22
b2b: disp eight_reals_fft_2, dist1, blkdst, 8
lea esi, [esi+2*dist1] ;; Next source pointer
IFDEF PFETCH
; prefetcht1 [esi-32+clm*32]
prefetcht1 [esi-32+clm*32+blkdst]
ENDIF
loopclm dl, clm, b2b
lea esi, [esi-clm*2*dist1+2*blkdst];; Next source pointer
;; Do 3 four_complex_fft macros
;; distance between fft data elements is 1
mov edi, sincos1 ;; Load sin/cos pointer
mov al, 3 ;; 2 iterations
b3b: disp four_complex_fft, blkdst, 2*blkdst, 8
lea esi, [esi+dist1] ;; Next source pointer
add al, 256/2 ;; Test inner loop counter
jnc b3b ;; Iterate if necessary
IFDEF PFETCH
; prefetcht1 [esi-32+clm*32]
prefetcht1 [esi-32+clm*32+blkdst]
; prefetcht1 [esi-32+clm*32+2*blkdst]
prefetcht1 [esi-32+clm*32+3*blkdst]
ENDIF
loopclm dl, clm, b3b
lea esi, [esi-clm*2*dist1+4*blkdst];; Next source pointer
lea edi, [edi+SCD] ;; Next sine/cosine pointer
dec al
jnz b3b
lea esi, [esi-3*4*blkdst-2*blkdst];; Restore source pointer
end_timer 22
;; Work on next 4 sets of 32 values
no_fft: lea esi, [esi+clm*2*dist1] ;; Next source pointer
dec dh ;; Test loop counter
jnz short more ;; Do more FFTs
lea esi, [esi+64] ;; Skip pad every 128 cache lines (4KB)
sub edx, 65536 ;; Test loop counter
jz short fftdn ;; Jump if done looping
mov dh, 128/clm ;; Restore cache line counter
more: cmp norm_ptr1, 0 ;; What was the loop start point?
jne c0b ;; Do inverse-FFT/norm/FFT iteration
jmp b0b ;; Do another FFT-only iteration
fftdn: lea esi, [esi-p2cl*2*dist1-p2cl/128*64];; Restore source pointer
cmp esi, DESTARG ;; If esi was not restored, then we
jne short fftdn1 ;; just finished skipped postfft data
sub ebx, ebx
mov DIST_TO_FFTSRCARG, ebx
cmp norm_ptr1, 0 ;; What was the loop start point?
je pass2 ;; FFT-only, go do pass 2
;; Split the carries into high and low carries (so they do not exceed
;; the desired number of bits per FFT word. Then add the carries back to the
;; FFT data.
start_timer 28
call gw_carries