-
Notifications
You must be signed in to change notification settings - Fork 36
/
Copy pathnumerical_verification_eprop_factorization_vs_BPTT.py
159 lines (131 loc) · 6.14 KB
/
numerical_verification_eprop_factorization_vs_BPTT.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
# Copyright 2020, the e-prop team
# Full paper: A solution to the learning dilemma for recurrent networks of spiking neurons
# Authors: G Bellec*, F Scherr*, A Subramoney, E Hajek, Darjan Salaj, R Legenstein, W Maass
#
# In this check we verify numerically the exactness of the equation (1) of the paper.
# In other word, that the loss gradient dE/dW_ji can be computed with the formula:
#
# dE/dW_ji = sum_t dE/dz_j(t) [d z/dW_ji (t) ]_local
#
# As a ground it will be computed to the gradient computed with BPTT via auto-differentiation.
# This numerical verification is contained in a single script and follows the structure:
#
# 1. Let's define some parameters
# 2. Define the network model and the inputs
# 3. Simulate the network
# 4. Compute the true learning signal: dE/dz (total derivative) for an arbitrary loss function
# 5. Compute the eligibility traces for ALIFs using formula (25)
# 6. Compute the gradients with equation (1)
# 7. Compute the gradients given by BPTT using auto-diff
# 8. Start the tensorflow session and compute numerical verification.
#
# The relative difference between the two resulting gradients dE/dW_ij are approximately 10^-14.
# This tiny difference is the expected machine precision for two different computation schemes of the same gradient.
#
# This script requires was tested with tensorflow 1.15 and python3.6.
# More details requirements are explained in the folder Figure_3_and_S7_...
import numpy as np
import tensorflow as tf
import matplotlib.pyplot as plt
from Figure_3_and_S7_e_prop_tutorials.models import EligALIF, exp_convolve, shift_by_one_time_step
from Figure_3_and_S7_e_prop_tutorials.tools import raster_plot
# 1. Let's define some parameters
n_in = 3
n_LIF = 4
n_ALIF = 4
n_rec = n_ALIF + n_LIF
dt = 1 # ms
tau_v = 20 # ms
tau_a = 500 # ms
T = 50 # ms
f0 = 100 # Hz
thr = 0.62
beta = 0.07 * np.concatenate([np.zeros(n_LIF),np.ones(n_ALIF)])
dampening_factor = 0.3
n_ref = 2
# 2. Define the network model and the inputs
cell = EligALIF(n_in=n_in, n_rec=n_LIF + n_ALIF, tau=tau_v, beta=beta, thr=thr,
dt=dt, tau_adaptation=tau_a, dampening_factor=dampening_factor,
stop_z_gradients=False, # here it computes the BPTT gradients, set it to True to compute instead e-prop with auto-diff
n_refractory=n_ref)
inputs = tf.random_uniform(shape=[1,T,n_in]) < f0 * dt / 1000
inputs = tf.cast(inputs, tf.float32)
# 3. Simulate the network,
# Using a for loop instead of using tf.nn.dynamic_rnn(...) is not efficient
# belows allows us to compute the true learning signals: dE/dz (total derivative)
# with auto-diff to perform the numerical verification
spikes = []
hidden_states = []
state = cell.zero_state(1,tf.float32,n_rec=n_rec)
for t in range(T):
outs, state = cell(inputs[:,t],state)
spikes.append(outs[0])
hidden_states.append(outs[1])
# 4. Compute the true learning signal: dE/dz (total derivative) for an arbitrary loss function
# (here a regression with a random signal)
w_out = tf.random_normal(shape=[n_rec,1])
decay_out = tf.exp(-1/20)
z_filtered = exp_convolve(tf.stack(spikes,1),decay_out)
y_out = tf.matmul(z_filtered,w_out)
y_target = tf.random_normal(shape=[1,T,1])
loss = tf.reduce_mean(tf.square(y_out - y_target))
# This defines the true learning signal: dE/dz (total derivative)
dE_dz = tf.gradients(loss, [spikes[t] for t in range(T)])
# Stack the lists as tensors (second dimension is time)
# - spikes and learning signals will have shape: [n_batch, n_time , n_neuron]
# - eligibility traces will have shape: [n_batch, n_time , n_neuron, n_neuron]
spikes = tf.stack(spikes,axis=1)
hidden_states = tf.stack(hidden_states,axis=1)
dE_dz = tf.stack(dE_dz,axis=1)
# 5. Compute the eligibility traces for ALIFs using formula (25)
v_scaled = cell.compute_v_relative_to_threshold_values(hidden_states)
spikes_last_time_step = shift_by_one_time_step(spikes)
eligibility_traces, _, _, _ = cell.compute_eligibility_traces(v_scaled, spikes_last_time_step, spikes, True)
# 6. Compute the gradients with equation (1)
gradients_eprop = tf.einsum('btj,btij->ij',dE_dz,eligibility_traces)
# 7. Compute the gradients given by BPTT using auto-diff
gradients_BPTT = tf.gradients(loss,cell.w_rec_var)[0]
# 8. Start the tensorflow session and compute numerical verification.
# (until now we only built a computational graph, no simulation has been performed)
sess = tf.Session()
sess.run(tf.global_variables_initializer())
tf_tensors = {'inputs': inputs,
'spikes': spikes,
'gradients_eprop': gradients_eprop,
'gradients_BPTT': gradients_BPTT,
'eligibility_traces': eligibility_traces,
'learning_signals': dE_dz}
np_tensors = sess.run(tf_tensors)
# Show the gradients
fig, ax_list = plt.subplots(1,2)
ax_list[0].imshow(np_tensors['gradients_eprop'])
ax_list[0].set_title("Gradient dE/dW_ji with e-prop")
ax_list[1].imshow(np_tensors['gradients_BPTT'])
ax_list[1].set_title("Gradient dE/dW_ji with BPTT")
# Compute the relative error:
g_e_prop = np_tensors['gradients_eprop']
g_bptt = np_tensors['gradients_BPTT']
M = np.max(np.abs(g_bptt))
g_e_prop /= M
g_bptt /= M
gradient_errors = (g_e_prop - g_bptt)**2
max_gradient_errors = np.max(gradient_errors)
print("Gradients computed with the e-prop factorization (equation (1) in the paper):")
print(np.array_str(np_tensors['gradients_eprop'],precision=3,suppress_small=True))
print("Gradients computed with BPTT and auto-differentiation:")
print(np.array_str(np_tensors['gradients_BPTT'],precision=3,suppress_small=True))
print("Maximum element wise errors: {}".format(max_gradient_errors))
fig, ax_list = plt.subplots(4, figsize=(8, 12), sharex=True)
raster_plot(ax_list[0],np_tensors['inputs'][0])
ax_list[0].set_ylabel("Input spikes")
raster_plot(ax_list[1],np_tensors['spikes'][0])
ax_list[1].set_ylabel("Spikes")
v_max = np.max(np.abs(np_tensors['learning_signals']))
ax_list[2].pcolor(np.arange(T),np.arange(n_rec),np_tensors['learning_signals'][0].T,cmap='seismic',vmin=-1,vmax=1)
ax_list[2].set_ylabel("Learning signals")
for i in range(3):
for j in range(3):
if i != j:
ax_list[3].plot(np.arange(T),np_tensors['eligibility_traces'][0,:,i,j])
ax_list[3].set_ylabel("Eligibility traces")
plt.show()