-
Notifications
You must be signed in to change notification settings - Fork 26
/
Copy pathexample.py
119 lines (79 loc) · 3.89 KB
/
example.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
import nest
import numpy as np
import numpy.ma as ma
from lsm.nest import LSM
from lsm.utils import poisson_generator
# convention: all times in [ms], except stated otherwise
def generate_stimulus_xor(stim_times, gen_burst, n_inputs=2):
inp_states = np.random.randint(2, size=(n_inputs, np.size(stim_times)))
inp_spikes = []
for times in ma.masked_values(inp_states, 0) * stim_times:
# for each input (neuron): generate spikes according to state (=1) and stimulus time-grid
spikes = np.concatenate([t + gen_burst() for t in times.compressed()])
# round to simulation precision
spikes *= 10
spikes = spikes.round() + 1.0
spikes = spikes / 10.0
inp_spikes.append(spikes)
# astype(int) could be omitted, because False/True has the same semantics
targets = np.logical_xor(*inp_states).astype(int)
return inp_spikes, targets
def inject_spikes(inp_spikes, neuron_targets):
spike_generators = nest.Create("spike_generator", len(inp_spikes))
for sg, sp in zip(spike_generators, inp_spikes):
nest.SetStatus([sg], {'spike_times': sp})
delay = dict(distribution='normal_clipped', mu=10., sigma=20., low=3., high=200.)
C_inp = 100 # int(N_E / 20) # number of outgoing input synapses per input neuron
nest.Connect(spike_generators, neuron_targets,
{'rule': 'fixed_outdegree',
'outdegree': C_inp},
{'model': 'static_synapse',
'delay': delay,
'weight': {'distribution': 'uniform',
'low': 2.5 * 10 * 5.0,
'high': 7.5 * 10 * 5.0}
})
def main():
nest.SetKernelStatus({'print_time': True, 'local_num_threads': 11})
sim_time = 200000
# stimulus
stim_interval = 300
stim_length = 50
stim_rate = 200 # [1/s]
readout_delay = 10
stim_times = np.arange(stim_interval, sim_time - stim_length - readout_delay, stim_interval)
readout_times = stim_times + stim_length + readout_delay
def gen_stimulus_pattern(): return poisson_generator(stim_rate, t_stop=stim_length)
inp_spikes, targets = generate_stimulus_xor(stim_times, gen_burst=gen_stimulus_pattern)
lsm = LSM(n_exc=1000, n_inh=250, n_rec=500)
inject_spikes(inp_spikes, lsm.inp_nodes)
# SIMULATE
nest.Simulate(sim_time)
readout_times = readout_times[5:]
targets = targets[5:]
states = lsm.get_states(readout_times, tau=20)
# add constant component to states for bias (TODO why?)
states = np.hstack([states, np.ones((np.size(states, 0), 1))])
n_examples = np.size(targets, 0)
n_examples_train = int(n_examples * 0.8)
train_states, test_states = states[:n_examples_train, :], states[n_examples_train:, :]
train_targets, test_targets = targets[:n_examples_train], targets[n_examples_train:]
readout_weights = lsm.compute_readout_weights(train_states, train_targets, reg_fact=5.0)
def classify(prediction):
return (prediction >= 0.5).astype(int)
train_prediction = lsm.compute_prediction(train_states, readout_weights)
train_results = classify(train_prediction)
test_prediction = lsm.compute_prediction(test_states, readout_weights)
test_results = classify(test_prediction)
print("simulation time: {}ms".format(sim_time))
print("number of stimuli: {}".format(len(stim_times)))
print("size of each state: {}".format(np.size(states, 1)))
print("---------------------------------------")
def eval_prediction(prediction, targets, label):
n_fails = sum(abs(prediction - targets))
n_total = len(targets)
print("mismatched {} examples: {:d}/{:d} [{:.1f}%]".format(label, n_fails, n_total, float(n_fails) / n_total * 100))
eval_prediction(train_results, train_targets, "training")
eval_prediction(test_results, test_targets, "test")
if __name__ == "__main__":
main()