-
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathCOV19D-TransferLearning (With Images Processing).py
576 lines (463 loc) · 18.8 KB
/
COV19D-TransferLearning (With Images Processing).py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Sat Aug 28 15:50:19 2021
@author: idu
"""
#######################################################################################
######################## Images Processing ############################################
#######################################################################################
### Slices Deletion
#########################
import os
import cv2
import re
# Define path of images to be processed [COV19-CT-DB]
train_dir = '/home/idu/Desktop/COV19D/train-processed/covid/'
val_dir = '/home/idu/Desktop/COV19D/val-processed/non-covid/'
test_dir = '/home/idu/Desktop/COV19D/ICASSP-test/11' ## ECCV COV19-CT-DB
main_dir = test_dir ## Change this directory as needed to do slices deletion in
# Define the percentage of images to delete
percentage_to_delete = 40 # Adjust this value as needed
# Function to calculate the number of images to delete
def calculate_images_to_delete(total_count):
images_to_delete = int((percentage_to_delete / 100) * total_count)
return images_to_delete
# Function to extract the image number from the filename
def extract_image_number(filename):
match = re.match(r"(\d+).jpg", filename)
if match:
return int(match.group(1))
return float('inf') # Use a large value for files that don't match the pattern
# Process each subfolder in the main directory
for subfolder in os.listdir(main_dir):
subfolder_path = os.path.join(main_dir, subfolder)
if os.path.isdir(subfolder_path):
# List all files in the subfolder
files = os.listdir(subfolder_path)
files.sort(key=lambda x: extract_image_number(x)) # Sort files by image number with handling None
total_count = len(files)
if total_count > 1:
images_to_delete = calculate_images_to_delete(total_count)
print(f"Processing subfolder: {subfolder}")
# Print the list of files before deletion
print("Files before deletion:", files)
# Delete a percentage of images, keeping centered ones
for i in range(images_to_delete):
# Delete images at the beginning and end
file_to_delete_first = os.path.join(subfolder_path, files[i])
file_to_delete_last = os.path.join(subfolder_path, files[-(i + 1)])
try:
print(f"Deleting image: {file_to_delete_first}")
os.remove(file_to_delete_first)
except FileNotFoundError:
print(f"File not found: {file_to_delete_first}")
try:
print(f"Deleting image: {file_to_delete_last}")
os.remove(file_to_delete_last)
except FileNotFoundError:
print(f"File not found: {file_to_delete_last}")
# Print the list of files after deletion
#files_after_deletion = os.listdir(subfolder_path)
#print("Files after deletion:", files_after_deletion)
print("Deletion process completed.")
### Slices Cropping
###################
#path for images to be processed
folder_path = test_dir ## Change this to the directory to do the slices cropping in
# Specify the new size and cropping position
new_height = 227
new_width = 300
crop_x = 99
crop_y = 160
for sub_folder in os.listdir(folder_path):
sub_folder_path = os.path.join(folder_path, sub_folder)
print(f'Processing subfolder: {sub_folder}')
for file_name in os.listdir(sub_folder_path):
file_path = os.path.join(sub_folder_path, file_name)
# Check if the file is an image (you can add more image extensions if needed)
if file_name.lower().endswith(('.png', '.jpg', '.jpeg')):
#print(f'Processing file: {file_name}')
img = cv2.imread(file_path, cv2.IMREAD_GRAYSCALE) # Load the image in grayscale
# Check if the image was loaded successfully
if img is not None:
# Crop the image
img_cropped = img[crop_y:crop_y+new_height, crop_x:crop_x+new_width]
# Save the cropped image by overwriting the original image
cv2.imwrite(file_path, img_cropped)
#print(f'Cropped and saved: {file_name}')
else:
print(f'Failed to load image: {file_name}')
print('finished')
####################################################################################
######################## Transfer Learning Models for classification################
####################################################################################
import os, glob
import numpy as np
import matplotlib.pyplot as plt
import cv2
import nibabel as nib
import numpy as np
import tensorflow as tf
from tensorflow.keras.preprocessing.image import ImageDataGenerator, array_to_img, img_to_array, load_img
from tensorflow import keras
from keras.models import load_model
from keras import backend as K
from keras.applications.vgg16 import VGG16
from tensorflow.keras.applications.resnet50 import ResNet50
from PIL import Image
from termcolor import colored
#Using image datagenerator for Generating data with rescaling and binary labels from the images (rgb images)
batch_size = 32
SIZE = 224 ## Resizing images to 224x224
train_datagen = ImageDataGenerator(rescale=1./255)
train_generator = train_datagen.flow_from_directory(
'/home/idu/Desktop/COV19D/train-processed/',
target_size=(SIZE, SIZE),
batch_size=batch_size,
classes = ['covid','non-covid'],
color_mode='rgb',
class_mode='binary')
val_datagen = ImageDataGenerator(rescale=1./255)
val_generator = val_datagen.flow_from_directory(
'/home/idu/Desktop/COV19D/val-processed/',
target_size=(SIZE, SIZE),
batch_size=batch_size,
classes = ['covid','non-covid'],
color_mode='rgb',
class_mode='binary')
### Using pretrained Xception model
Model_Xcep = tf.keras.applications.Xception(include_top=False, weights='imagenet', input_shape=(SIZE, SIZE, 3))
#Model_VGG = tf.keras.applications.vgg16.VGG16(include_top=False, weights='imagenet', input_shape=(SIZE, SIZE, 3))
for layer in Model_Xcep.layers:
layer.trainable = False
#for layer in Model_VGG.layers:
# layer.trainable = False
Model_Xcep.summary()
###### modified the output
model = tf.keras.Sequential([
Model_Xcep,
tf.keras.layers.GlobalAveragePooling2D(),
tf.keras.layers.Dense(128, activation='relu'),
tf.keras.layers.BatchNormalization(),
tf.keras.layers.Dropout(0.2),
tf.keras.layers.Dense(1, activation='sigmoid')
])
#model = tf.keras.Sequential([
# Model_VGG,
# tf.keras.layers.GlobalAveragePooling2D(),
# tf.keras.layers.Dense(128, activation='relu'),
# tf.keras.layers.BatchNormalization(),
# tf.keras.layers.Dropout(0.2),
# tf.keras.layers.Dense(1, activation='sigmoid')
#])
#model = tf.keras.models.load_model ("Modified_Xception1.h5")
model.summary()
# Adding callbacks
callbacks = [
tf.keras.callbacks.ModelCheckpoint("/home/idu/Desktop/COV19D/saved-models/Transfer Learning/imageprocessed-Xception.h5", save_best_only=True, verbose = 0),
tf.keras.callbacks.EarlyStopping(patience=4, monitor='val_accuracy', verbose=1),
tf.keras.callbacks.ReduceLROnPlateau(monitor='val_loss', factor=0.5, patience=2, verbose=1)
]
# Compiling the model
model.compile(optimizer = keras.optimizers.Adam(learning_rate=0.001),
loss = 'binary_crossentropy',
metrics=[tf.keras.metrics.Precision(),tf.keras.metrics.Recall(),'accuracy'])
#### TRainging the model
history = model.fit(train_generator,
validation_data=val_generator, epochs=15,
callbacks=[callbacks])
model.save("/home/idu/Desktop/COV19D/saved-models/COV19D_2nd/Modified_Xception.h5")
model.save("/home/idu/Desktop/COV19D/saved-models/COV19D_2nd/Modified_VGG.h5")
# ============ Load Checkpoint ============
model = keras.models.load_model("/home/idu/Desktop/COV19D/saved-models/Transfer Learning/imageprocessed-Xception.h5")
# get weights
modelWeights = model.get_weights()
# get optimizer state as it was on last epoch
modelOptimizer = model.optimizer
# ============ Compile Model ============
# redefine architecture (newModel=models.Sequential(), etc.)
newModel= redefine_your_model_architecture()
#$ newModel= previous model architecture
# compile
newModel.compile(optimizer=modelOptimizer,
loss = 'binary_crossentropy',
metrics=[tf.keras.metrics.Precision(),tf.keras.metrics.Recall(),'accuracy'])
# set trained weights
newModel.set_weights(modelWeights)
# Resume Training if interrupted
history = newModel.fit(train_generator,
validation_data=val_generator, epochs=30,
callbacks=[callbacks])
#Evaluation of the model on the train and validation sets
## Accuracy & Loss
plt.plot(history.history['accuracy'])
plt.plot(history.history['val_accuracy'])
plt.title('model accuracy')
plt.ylabel('accuracy')
plt.xlabel('epoch')
plt.legend(['train', 'validation'], loc='upper left')
plt.show()
plt.plot(history.history['loss'])
plt.plot(history.history['val_loss'])
plt.title('model loss')
plt.ylabel('loss')
plt.xlabel('epoch')
plt.legend(['train', 'validation'], loc='upper left')
plt.show()
### Precision, Recall, Macro F1 score
val_recall = history.history['val_recall']
print(val_recall)
avg_recall = np.mean(val_recall)
avg_recall
val_precision = history.history['val_precision']
avg_precision = np.mean(val_precision)
avg_precision
Train_accuracy = history.history['accuracy']
epochs = range(1, len(Train_accuracy)+1)
plt.figure(figsize=(12,6))
plt.plot(epochs, val_recall, 'g', label='Validation Recall')
plt.plot(epochs, val_precision, 'b', label='Validation Prcision')
plt.title('Validation recall and Validation Percision')
plt.xlabel('Epochs')
plt.ylabel('Recall and Precision')
plt.legend()
plt.ylim(0,1)
plt.show()
###### The macro F1 score on the validation sex (0.78232)
Macro_F1score = (2*avg_precision*avg_recall)/ (avg_precision + avg_recall)
Macro_F1score
#Making predictions on the test set of unseen images; COV19-CT-DB, ECCV dataset release
## Choosing the directory where the test/validation data is at
folder_path = '/home/idu/Desktop/COV19D/val-processed/covid' # Change as needed
extensions0 = []
extensions1 = []
extensions2 = []
extensions3 = []
extensions4 = []
extensions5 = []
extensions6 = []
extensions7 = []
extensions8 = []
extensions9 = []
extensions10 = []
extensions11 = []
extensions12 = []
extensions13 = []
covidd = []
noncovidd = []
coviddd = []
noncoviddd = []
covidddd = []
noncovidddd = []
coviddddd = []
noncoviddddd = []
covidd6 = []
noncovidd6 = []
covidd7 = []
noncovidd7 = []
covidd8 = []
noncovidd8 = []
results =1
for fldr in os.listdir(folder_path):
if fldr.startswith("ct"):
sub_folder_path = os.path.join(folder_path, fldr)
for filee in os.listdir(sub_folder_path):
file_path = os.path.join(sub_folder_path, filee)
c=load_img(file_path, color_mode='rgb', target_size=(224,224))
c=img_to_array(c)
c= np.expand_dims(c, axis=0)
c /= 255.0
result = model.predict(c) #Probability of 1 (non-covid)
if result > 0.97: # Class probability threshod is 0.97
extensions1.append(results)
else:
extensions0.append(results)
if result > 0.90: # Class probability threshod is 0.90
extensions3.append(results)
else:
extensions2.append(results)
if result > 0.70: # Class probability threshod is 0.70
extensions5.append(results)
else:
extensions4.append(results)
if result > 0.40: # Class probability threshod is 0.40
extensions7.append(file_path)
else:
extensions6.append(results)
if result > 0.50: # Class probability threshod is 0.50
extensions9.append(results)
else:
extensions8.append(results)
if result > 0.15: # Class probability threshod is 0.15
extensions11.append(results)
else:
extensions10.append(results)
if result > 0.05: # Class probability threshod is 0.05
extensions13.append(results)
else:
extensions12.append(results)
#print(sub_folder_path, end="\r \n")
## The majority voting at Patient's level
if len(extensions1) > len(extensions0):
print(fldr, colored("NON-COVID", 'red'), len(extensions1), "to", len(extensions0))
noncovidd.append(fldr)
else:
print (fldr, colored("COVID", 'blue'), len(extensions0), "to", len(extensions1))
covidd.append(fldr)
if len(extensions3) > len(extensions2):
print (fldr, colored("NON-COVID", 'red'), len(extensions3), "to", len(extensions2))
noncoviddd.append(fldr)
else:
print (fldr, colored("COVID", 'blue'), len(extensions2), "to", len(extensions3))
coviddd.append(fldr)
if len(extensions5) > len(extensions4):
print (fldr, colored("NON-COVID", 'red'), len(extensions5), "to", len(extensions4))
noncovidddd.append(fldr)
else:
print (fldr, colored("COVID", 'blue'), len(extensions5), "to", len(extensions4))
covidddd.append(fldr)
if len(extensions7) > len(extensions6):
print (fldr, colored("NON-COVID", 'red'), len(extensions7), "to", len(extensions6))
noncoviddddd.append(fldr)
else:
print (fldr, colored("COVID", 'blue'), len(extensions6), "to", len(extensions7))
coviddddd.append(fldr)
if len(extensions9) > len(extensions8):
print (fldr, colored("NON-COVID", 'red'), len(extensions9), "to", len(extensions8))
noncovidd6.append(fldr)
else:
print (fldr, colored("COVID", 'blue'), len(extensions8), "to", len(extensions9))
covidd6.append(fldr)
if len(extensions11) > len(extensions10):
print (fldr, colored("NON-COVID", 'red'), len(extensions11), "to", len(extensions10))
noncovidd7.append(fldr)
else:
print (fldr, colored("COVID", 'blue'), len(extensions10), "to", len(extensions11))
covidd7.append(fldr)
if len(extensions13) > len(extensions12):
print (fldr, colored("NON-COVID", 'red'), len(extensions13), "to", len(extensions12))
noncovidd8.append(fldr)
else:
print (fldr, colored("COVID", 'blue'), len(extensions12), "to", len(extensions13))
covidd8.append(fldr)
extensions0=[]
extensions1=[]
extensions2=[]
extensions3=[]
extensions4=[]
extensions5=[]
extensions6=[]
extensions7=[]
extensions8=[]
extensions9=[]
extensions10=[]
extensions11=[]
extensions12=[]
extensions13=[]
#Checking the results
#print(len(covidd))
#print(len(coviddd))
print(len(covidddd))
print(len(coviddddd))
print(len(covidd6))
print(len(covidd7))
#print(len(covidd8))
#print(len(noncovidd))
#print(len(noncoviddd))
print(len(noncovidddd))
print(len(noncoviddddd))
print(len(noncovidd6))
print(len(noncovidd7))
#print(len(noncovidd8))
#print(len(covidd+noncovidd))
#print(len(coviddd+noncoviddd))
print(len(covidddd+noncovidddd))
print(len(coviddddd+noncoviddddd))
print(len(covidd6+noncovidd6))
print(len(covidd7+noncovidd7))
#print(len(covidd8+noncovidd8))
### Saving to csv files format Using Majority Votingat the slice level 0.5 slice level class probability
import csv
with open('/home/idu/Desktop/noncovid.csv', 'w') as f:
wr = csv.writer(f, delimiter="\n")
wr.writerow(noncovidd7)
with open('/home/idu/Desktop/covid.csv', 'w') as f:
wr = csv.writer(f, delimiter="\n")
wr.writerow(covidd7)
## Using 0.9 Slice level class probability
with open('/home/idu/Desktop/noncovid.csv', 'w') as f:
wr = csv.writer(f, delimiter="\n")
wr.writerow(noncoviddd)
with open('/home/idu/Desktop/ncovid.csv', 'w') as f:
wr = csv.writer(f, delimiter="\n")
wr.writerow(coviddd)
## Using 0.15 Slice level class probability
with open('/home/idu/Desktop/noncovid.csv', 'w') as f:
wr = csv.writer(f, delimiter="\n")
wr.writerow(noncovidd7)
with open('/home/idu/Desktop/covid.csv', 'w') as f:
wr = csv.writer(f, delimiter="\n")
wr.writerow(covidd7)
## Using 0.4 Slice level class probability
with open('/home/idu/Desktop/noncovid.csv', 'w') as f:
wr = csv.writer(f, delimiter="\n")
wr.writerow(noncoviddddd)
with open('/home/idu/Desktop/covid.csv', 'w') as f:
wr = csv.writer(f, delimiter="\n")
wr.writerow(coviddddd)
## Statistical Analysis of Model Miscalssifications
# Drectly Checking the Images
file_path = '/home/idu/Desktop/COV19D/val-processed/covid/ct_scan168/177.jpg' # Change as neede
c=load_img(file_path, color_mode='rgb', target_size=(224,224))
c=img_to_array(c)
c= np.expand_dims(c, axis=0)
c /= 255.0
result = model.predict(c)
if result > 0.4: ## The class probaility threshold
print('non-covid')
else:
print('covid')
# Studing number of miscalssification in each slice
import os
import csv
from tensorflow.keras.preprocessing.image import load_img, img_to_array
import numpy as np
import pandas as pd
folder_path = '/home/idu/Desktop/COV19D/val-processed/covid' # Change as needed
All_slices = []
slices_extensions = []
# Create a list to store the counts
counts_data = []
# Assuming 'model' is defined before this code
for fldr in os.listdir(folder_path):
if fldr.startswith("ct"):
sub_folder_path = os.path.join(folder_path, fldr)
for filee in os.listdir(sub_folder_path):
file_path = os.path.join(sub_folder_path, filee)
c = load_img(file_path, color_mode='rgb', target_size=(224, 224))
c = img_to_array(c)
c = np.expand_dims(c, axis=0)
c /= 255.0
result = model.predict(c) # Probability of 1 (non-covid)
# Misclassification Case
if result > 0.40:
slices_extensions.append(file_path)
All_slices.append(file_path)
misclassified_slices_count = len(slices_extensions)
all_slices_count = len(All_slices)
counts_data.append((misclassified_slices_count, all_slices_count))
print(sub_folder_path, misclassified_slices_count, '/', all_slices_count)
# Save counts_data to a CSV file
csv_file_path = '/home/idu/Desktop/counts_data.csv' # Change the path as needed
with open(csv_file_path, 'w', newline='') as csv_file:
fieldnames = ['Number of Misclassified Slices', 'Number of All Slices']
writer = csv.DictWriter(csv_file, fieldnames=fieldnames)
writer.writeheader()
for row in counts_data:
writer.writerow({'Number of Misclassified Slices': row[0], 'Number of All Slices': row[1]})
# Convert the CSV file to Excel
excel_file_path = '/home/idu/Desktop/counts_data.xlsx' # Change the path as needed
df = pd.read_csv(csv_file_path)
df.to_excel(excel_file_path, index=False)
### By KENAN MORANI