-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathgenerate_NERF_transforms.py
185 lines (159 loc) · 6.28 KB
/
generate_NERF_transforms.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
import os
import math
import numpy as np
import json
import argparse
parser = argparse.ArgumentParser()
parser.add_argument("--dataset-config", type=str, required=True, help="dataset config file (i.e.: the 'lightfield.cfg' file).")
parser.add_argument("--subdir", type=str, required=False, help="path prefix to include in the filename paths")
parser.add_argument("--output-transforms", type=str, required=True, help="path to the transforms.json to produce.")
parser.add_argument("--scene", type=str,
choices=["garden", "barbershop", "lone_monk", "kitchen"],
help="A specific scene name that will be used to pick sane scaling/aabb defaults.")
parser.add_argument("--scale", type=float,
help="A scale for NeRF to fit the unit cube.")
parser.add_argument("--extra-offset", type=float, nargs=3,
help="A 3-vector that defines extra offset in NeRF coordinates")
parser.add_argument("--render-aabb", type=float, nargs=6,
help="Two 3-vectors that define the AABB min and max in NeRF coordinates")
args = parser.parse_args()
names = []
positions = [] # camera positions in 3-tuples
rotations = [] # camera orientations in 3-tuples (degrees)
if args.dataset_config.endswith(".cfg"):
# Load the stupid format.
with open(args.dataset_config, "r") as file:
def nextline():
return file.readline().split(",")
file.readline()
resolution = [int(x) for x in nextline()]
proj0 = [float(x) for x in nextline()]
proj1 = [float(x) for x in nextline()]
proj2 = [float(x) for x in nextline()]
proj3 = [float(x) for x in nextline()]
camera_lines = file.readlines()
for cl in camera_lines:
p = cl.split(",")
names.append(p[0])
positions.append([float(x) for x in p[1:4]])
rotations.append([float(x) for x in p[4:]])
print("proj matrix")
print(proj0)
print(proj1)
print(proj2)
print(proj3)
camera_angle_x = 2.0 * np.arctan(1.0 / proj0[0])
camera_angle_y = 2.0 * np.arctan(1.0 / proj1[1])
elif args.dataset_config.endswith(".json"):
with open(args.dataset_config, "r") as file:
cfg = json.load(file)
cam_type = cfg['camera']['type']
resolution = cfg['resolution']
if cam_type == 'PERSP':
proj = cfg['camera']['projection_matrix']
camera_angle_x = 2.0 * np.arctan(1.0 / proj[0][0])
camera_angle_y = 2.0 * np.arctan(1.0 / proj[1][1])
else:
# Not supported by Nerf
raise NotImplementedError("Not supported by NerF")
for fr in cfg['frames']:
names.append(fr['name'])
positions.append(fr['position'])
rotations.append(fr['rotation'])
else:
parser.print_usage()
print("Not a valid config file given. Either .json (preferred) or .cfg (deprecated)")
exit(1)
focal = [float(x) for x in resolution]
principal_point = [x * 0.5 for x in focal]
print("camera_angle_x", camera_angle_x, "rad =", camera_angle_x / np.pi * 180, "degrees")
print("camera_angle_y", camera_angle_y, "rad =", camera_angle_y / np.pi * 180, "degrees")
average_position = np.mean(positions, axis=0)
print("average_position", average_position)
def generate_transform_matrix(pos, rot):
def Rx(theta):
return np.matrix([[ 1, 0 , 0 ],
[ 0, np.cos(theta),-np.sin(theta)],
[ 0, np.sin(theta), np.cos(theta)]])
def Ry(theta):
return np.matrix([[ np.cos(theta), 0, np.sin(theta)],
[ 0 , 1, 0 ],
[-np.sin(theta), 0, np.cos(theta)]])
def Rz(theta):
return np.matrix([[ np.cos(theta), -np.sin(theta), 0 ],
[ np.sin(theta), np.cos(theta) , 0 ],
[ 0 , 0 , 1 ]])
R = Rz(rot[2]) * Ry(rot[1]) * Rx(rot[0])
xf_rot = np.eye(4)
xf_rot[:3,:3] = R
xf_pos = np.eye(4)
xf_pos[:3,3] = pos # - average_position
# barbershop_mirros_hd_dense:
# - camera plane is y+z plane, meaning: constant x-values
# - cameras look to +x
# Don't ask me...
extra_xf = np.matrix([
[-1, 0, 0, 0],
[ 0, 0, 1, 0],
[ 0, 1, 0, 0],
[ 0, 0, 0, 1]])
# NerF will cycle forward, so lets cycle backward.
shift_coords = np.matrix([
[0, 0, 1, 0],
[1, 0, 0, 0],
[0, 1, 0, 0],
[0, 0, 0, 1]])
xf = shift_coords @ extra_xf @ xf_pos
assert np.abs(np.linalg.det(xf) - 1.0) < 1e-4
xf = xf @ xf_rot
return xf
average_position_transformed = np.transpose(np.mean([generate_transform_matrix(positions[i], [0,0,0])[:3,3] for i in range(len(names))], axis=0))
print("Average position transformed: ", average_position_transformed)
frames = [{
"file_path": names[i] if args.subdir is None else os.path.join(args.subdir, names[i]),
"transform_matrix": generate_transform_matrix(positions[i], rotations[i]).tolist(),
} for i in range(len(names))]
transforms_config = {
"camera_angle_x": camera_angle_x,
"scale": 0.2,
"offset": [0.5, 0.5, 0.5],
}
if args.scene == "barbershop":
transforms_config.update({
"scale": 0.1,
"offset": [0.5, 0.75, 0.5],
})
elif args.scene == "garden":
transforms_config.update({
"scale": 0.1,
"offset": [0.5, 0.5, 0.2],
})
elif args.scene == "lone_monk":
transforms_config.update({
"scale": 0.03,
"offset": [0.35, 0.5, 0.2]
})
elif args.scene == "kitchen":
transforms_config.update({
"scale": 0.2,
"offset": [0.2, 0.25, 0.5],
})
if args.scale is not None:
print("Overriding scale:", args.scale)
transforms_config["scale"] = args.scale
offset = np.array(transforms_config["offset"]).squeeze()
offset -= transforms_config["scale"] * average_position_transformed.squeeze()
if args.extra_offset is not None:
print("Apply extra offset:", args.extra_offset)
offset += np.array(args.extra_offset)
transforms_config["offset"] = offset.tolist()
if args.render_aabb:
transforms_config["render_aabb"] = [args.render_aabb[:3], args.render_aabb[3:]]
print()
print("Generating config:")
print(transforms_config)
transforms_config.update({
"frames": frames,
})
with open(args.output_transforms, "w") as outfile:
json.dump(transforms_config, outfile, indent=4)