-
Notifications
You must be signed in to change notification settings - Fork 39
/
Copy pathslides.tex
441 lines (315 loc) · 8.85 KB
/
slides.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
\input{../include/preamble.tex}
\title[ID1019 Maps and Structs]{Maps and Structs}
\author{Johan Montelius}
\institute{KTH}
\date{\semester}
\begin{document}
\begin{frame}
\titlepage
\end{frame}
\begin{frame}[fragile]{Java vs Elixir}
\pause
\begin{columns}
\begin{column}{0.6\textwidth}
\begin{verbatim}
public static int fib(int n) {
if ( n == 0 )
return 0;
int n2 = 0, n1 = 1;
int ni = n1;
for(int i = 1; i < n; i++) {
ni = n1 + n2;
n2 = n1;
n1 = ni;
}
return ni;
};
\end{verbatim}
\end{column}
\begin{column}{0.4\textwidth}
\begin{verbatim}
def fib(0) do 0 end
def fib(1) do 1 end
def fib(n) do
fib(n-1) + fib(n-2)
end
\end{verbatim}
\end{column}
\end{columns}
\end{frame}
\begin{frame}[fragile]{Elixir type specification}
\pause\vspace{10pt}
\begin{verbatim}
@spec fib(integer()) :: integer()
def fib(0) do 0 end
def fib(1) do 1 end
def fib(n) do
fib(n-1) + fib(n-2)
end
\end{verbatim}
\vspace{20pt}\pause The compiler does not care about type specifications!
\vspace{10pt}\pause Compiles ok:
\begin{verbatim}
:
fib(:bananas)
:
\end{verbatim}
\end{frame}
\begin{frame}{types in Elixir}
What types do we have:
\pause\vspace{10pt}
Singletons, the types of individual data structures:
\begin{itemize}
\item 1, 2 or 42
\item :foo, :bar or :atom
\item \{:foo, 42\}
\end{itemize}
\pause\vspace{10pt}
Unions of singletons, what we normally refer to as ``types'':
\begin{itemize}
\item integer(): any integer value
\item float(): any floating point value
\item atom(): any atom
\item pid(): a process identifier
\item reference(): a reference
\item fun(): a function
\item .. and many more
\end{itemize}
{\em Could also be written without the ``()''. }
\end{frame}
\begin{frame}{types in Elixir}
Types for compound data structures:
\pause\vspace{10pt}
\begin{itemize}
\item tuples: {\tt \{\}}, {\tt \{atom(), integer()\}}, ....
\item lists: {\tt [integer()]}, {\tt [\{atom(), integer()\}]}, {\tt []}... \pause
\end{itemize}
\begin{itemize}
\item tuple(): a tuple of any size \pause
\item list(): a proper list of any type ({\tt [any()]} \pause
\item list(integer()) : a proper list of integers \pause
\end{itemize} \pause
\end{frame}
\begin{frame}[fragile]{type declarations}
\pause\vspace{10pt}
Cards are represented as {\tt \{:card, suit, value\}}, where the
suit is represented using the atoms {\tt :spade}, {\tt :heart}, {\tt
:diamond} and {\tt :clubs}.
\vspace{10pt}
How do we specify the type for {\em suit/1}:
\begin{verbatim}
suit({:card, suit, _}) do suit end
\end{verbatim}
\pause\vspace{10pt}
\begin{verbatim}
@spec suit(tuple()) :: atom()
\end{verbatim}
\end{frame}
\begin{frame}[fragile]{defining types}
We would like to define our own type that specifies what a card looks like.
\begin{verbatim}
@type value() :: 1..13
\end{verbatim}
\pause
\begin{verbatim}
@type suit() :: :spade | :heart | :diamond | :clubs
\end{verbatim}
\pause
\begin{verbatim}
@type card() :: {:card, suit(), value()}
\end{verbatim}
\pause
\begin{verbatim}
@spec suit(card()) :: suit()
\end{verbatim}
\end{frame}
\begin{frame}[fragile]{defining types}
\pause
\begin{verbatim}
@type boolean() :: true | false
\end{verbatim}
\pause
\begin{verbatim}
@type byte() :: 1..255
\end{verbatim}
\pause
\begin{verbatim}
@type number() :: integer() | float()
\end{verbatim}
\pause
The type {\tt any()}, defines the union of all types.
\end{frame}
\begin{frame}[fragile]{defining types}
The type list(t) is the type of lists containing elements of type t.
\pause
\begin{verbatim}
@type list(t) :: [] | [t|list(t)]
\end{verbatim}
\pause
\begin{verbatim}
@type string() :: list(char())
\end{verbatim}
Define the type of a deck of cards.
\pause
\begin{verbatim}
@type deck() :: list(card())
\end{verbatim}
\end{frame}
\begin{frame}{program annotation}
Type specifiers are used for:
\begin{itemize}
\item documentation of intended usage
\pause
\item automatic detection of type errors
\end{itemize}
\pause\vspace{10pt}
{\em the compiler does not check types}
\pause\vspace{10pt}
Dialyzer:
\begin{itemize}
\item checks that given specifications agree with call patterns
\item detects exceptions and dead code
\end{itemize}
\end{frame}
\begin{frame}{dynamically typed}
Elixir is a {\em dynamically typed} language: types are checked and handled at run time.
{\em other dynamically typed languages: PHP, Python, Erlang, Lisp, Prolog}
\vspace{20pt}
Java is a {statically typed} language: types are checked and handled at compile time.
{\em other statically typed languages: C/C++, Haskell, Scala, Rust}
\end{frame}
\begin{frame}[fragile]{statically typed}
The advantage of a statically typed language:
\begin{columns}
\begin{column}{0.5\textwidth}
\begin{verbatim}
typedef struct person {
int id;
char name[20];
char email[20];
} person;
void hello(person *who) {
printf("Hello %s\n", who->name);
}
\end{verbatim}
\end{column}
\begin{column}{0.5\textwidth}
\begin{verbatim}
@type person() :: {:person,
integer(),
binary(),
binary()}
def hello({:person, _, name, _}) do
IO.write("Hello #{name}\n")
end
\end{verbatim}
\end{column}
\end{columns}
\vspace{20pt}
\pause {\em In a statically typed language, the compiled code of
{\tt hello()} takes the structure {\tt person} for granted.}
\end{frame}
\begin{frame}[fragile]{type inference}
A statically typed language does not imply that the programmer has
to specify all types explicitly - the compiler can infer the types (
Haskell, Rust, ..).
\vspace{10pt}\pause
\begin{verbatim}
fib 0 = 0
fib 1 = 1
fib n = fib (n-1) + fib (n-2)
\end{verbatim}
\end{frame}
\begin{frame}{dynamically vs statically}
The pros and cons of dynamically typed languages:
\begin{itemize}
\item pro: quick to write code
\item pro: compiling an easier task
\item con: induces an overhead at run-time
\item con: errors detected first at run-time (and maybe very late)
\end{itemize}
\pause
{\em So why is Elixir dynamically typed?}
\pause
{\em Easier to handle dynamic code updates in distributed systems.}
\end{frame}
\begin{frame}{Type systems}
\begin{itemize}
\item Elixir is a dynamically typed programming language. \pause
\item External tools (Dialyzer) can check for type errors. \pause
\item Type specification, if correct, helps in understanding the code. \pause
\item Dynamically vs statically typed systems - pros and cons. \pause
\end{itemize}
\end{frame}
\begin{frame}[fragile]{problem}
\begin{verbatim}
{:car, "Volvo",
{:model, "XC60", 2018},
{:engine, "A4", 4, 2000, 140},
{:perf, 4.6, 8.8}}
\end{verbatim}
\vspace{20pt} \pause
\begin{verbatim}
def car_brand_model( {:car, brand, {:model, model, _}, _ , _}) do
"#{brand} #{model}"
end
\end{verbatim}
\end{frame}
\begin{frame}[fragile]{key-value list}
\begin{verbatim}
{:car, "Volvo",
[{:model, "XC60"},{:year 2018}, {:engine, "A4"},
{:cyl, 4}, {:vol, 2000}, {:power 140},
{:fuel, 4.6}, {:acc 8.8}]}
\end{verbatim}
\vspace{20pt} \pause
\begin{verbatim}
def car_brand_model( {:car, brand, prop} ) do
case List.keyfind(prop, :model, 0) do
nil ->
brand
{:model, model} ->
"#{brand} #{model}"
end
end
\end{verbatim}
\end{frame}
\begin{frame}[fragile]{key-value list}
\vspace{20pt}\pause{\em What is the asymptotic time complexity of {\tt keyfind/3}?}
\vspace{40pt}\pause{\em alternative syntax: {\tt [model: "XC60", year: 2018, ...]}}
\end{frame}
\begin{frame}{introducing Maps}
An efficient implementation of a key-value store with a syntax for pattern matching.
\vspace{10pt}\pause
\begin{itemize}
\item {\tt \%\{\}} : an empty map \pause
\item {\tt myCar = \%\{:brand => "Volvo", :model => "XC60", :year= 2008\}} : define properties \pause
\item {\tt \%\{:model => model\} = myCar} : pattern matching \pause
\item {\tt newCar = \%\{myCar | :year => 2018\}} : map as template for new map
\end{itemize}
\vspace{20pt}\pause{\em Still no compiler support to detect errors.}
\end{frame}
\begin{frame}[fragile]{introducing Structs}
\begin{verbatim}
defmodule Car do
defstruct brand: "", year: 0, model: "", cyl: 0, power: 0
def brand_model(%Car{brand: brand, model: model}) do
"#{brand} #{model}"
end
def year(car = %Car{}) do
car.year
end
end
\end{verbatim}
\vspace{20pt}\pause {\em Requesting a property that is not defined is detected at compile time.}
\end{frame}
\begin{frame}{Summary}
\begin{itemize}
\item dynamically and statically typed systems: pros and cons
\item tuples: simple but gives us some problems
\item key-value lists: what problems do we solve, what remains
\item Maps: pattern matching and more efficient
\item Structs: towards the advantage of a statically typed system
\end{itemize}
\end{frame}
\end{document}