-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathgrid_search.py
113 lines (98 loc) · 3.72 KB
/
grid_search.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
import logging
import os
import json
import random
import torch
import numpy as np
from models.arg import Trainer as ARGTrainer
from models.argd import Trainer as ARGDTrainer
def setup_seed(seed):
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.backends.cudnn.benchmark = False
torch.backends.cudnn.deterministic = True
def frange(x, y, jump):
while x < y:
x = round(x, 8)
yield x
x += jump
class Run():
def __init__(self,
config,
writer
):
self.config = config
self.writer = writer
def getFileLogger(self, log_file):
logger = logging.getLogger()
if not logger.handlers:
logger.setLevel(level = logging.INFO)
handler = logging.FileHandler(log_file)
handler.setLevel(logging.INFO)
formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s')
handler.setFormatter(formatter)
logger.addHandler(handler)
return logger
def config2dict(self):
config_dict = {}
for k, v in self.configinfo.items():
config_dict[k] = v
return config_dict
def main(self):
param_log_dir = self.config['param_log_dir']
if not os.path.exists(param_log_dir):
os.makedirs(param_log_dir)
param_log_file = os.path.join(param_log_dir, self.config['model_name'] + '_' + self.config['data_name'] +'_'+ 'param.txt')
logger = self.getFileLogger(param_log_file)
train_param = { 'lr': [self.config['lr']] }
print(train_param)
param = train_param
best_param = []
json_dir = os.path.join(
'./logs/json/',
self.config['model_name'] + '_' + self.config['data_name']
)
json_path = os.path.join(
json_dir,
'month_' + str(self.config['month']) + '.json'
)
if not os.path.exists(json_dir):
os.makedirs(json_dir)
json_result = []
for p, vs in param.items():
setup_seed(self.config['seed'])
best_metric = {}
best_metric['metric'] = 0
best_v = vs[0]
best_model_path = None
for i, v in enumerate(vs):
self.config['lr'] = v
if self.config['model_name'] == 'ARG':
trainer = ARGTrainer(self.config, self.writer)
elif self.config['model_name'] == 'ARG-D':
trainer = ARGDTrainer(self.config, self.writer)
else:
raise ValueError('model_name is not supported')
metrics, model_path, train_epochs = trainer.train(logger)
json_result.append({
'lr': self.config['lr'],
'metric': metrics,
'train_epochs': train_epochs,
})
if metrics['metric'] > best_metric['metric']:
best_metric = metrics
best_v = v
best_model_path = model_path
best_param.append({p: best_v})
print("best model path:", best_model_path)
print("best macro f1:", best_metric['metric'])
print("best metric:", best_metric)
logger.info("best model path:" + best_model_path)
logger.info("best param " + p + ": " + str(best_v))
logger.info("best metric:" + str(best_metric))
logger.info('==================================================\n\n')
with open(json_path, 'w') as file:
json.dump(json_result, file, indent=4, ensure_ascii=False)
return best_metric