forked from OpenGenomics/muse-tool
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathvcf_reformat.py
executable file
·185 lines (161 loc) · 7.22 KB
/
vcf_reformat.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
#!/usr/bin/env python
import sys
import re
import logging
import pysam
from argparse import ArgumentParser
class MetaData:
def __init__(self, line):
res = re.search(r'^\#\#(\w+)=(.*)$', line)
if res is None:
raise IOException("Bad Metadata line")
self.name = res.group(1)
self.record = res.group(2)
def __str__(self):
return "##%s=%s" % (self.name, self.record)
class Record:
def __init__(self, line):
self.line = line.rstrip("\r\n")
tmp = self.line.split("\t")
self.seq = tmp[0]
self.pos = long(tmp[1])
self.id = tmp[2]
self.ref = tmp[3]
self.alt = tmp[4]
self.qual = tmp[5]
self.filter = tmp[6]
self.info = tmp[7]
self.format = ""
self.samples = []
def __str__(self):
return "\t".join( [
self.seq, "%d" % (self.pos), self.id, self.ref, self.alt,
self.qual, self.filter, self.info, self.format] + self.samples )
def atoi(text):
return int(text) if text.isdigit() else text.lower()
class VCF:
def __init__(self):
self.metadata = []
self.records = []
self.header = None
self.samples = []
def parse(self, handle):
for line in handle:
if line.startswith("##"):
self.metadata.append( MetaData(line) )
elif line.startswith("#CHROM"):
self.header = line.rstrip("\n\r")
self.samples = line.rstrip("\n\r").split("\t")[9:]
else:
self.records.append( Record(line) )
def adjust_format(self, bam_files):
bams = []
for b in bam_files:
bams.append(pysam.AlignmentFile(b, "rb"))
self.records.sort(key=lambda x: [atoi(x.seq), x.pos])
#loop through each record
for rec in self.records:
all_reads = []
good_reads = []
all_quals = []
good_quals = []
for sample in bams:
#for each sample grab the pileup
pileup = sample.pileup(rec.seq, rec.pos-1, rec.pos)
for pile in pileup:
#we're only concered about one specific position
if pile.reference_pos == rec.pos-1:
all_sread = []
all_squal = []
good_sread = []
good_squal = []
#grab all the reads and quality scores that map to this postion
for row in pile.pileups:
if not row.indel and not row.is_del:
good_read = True
c_read = row.alignment.query_sequence[row.query_position]
c_qual = row.alignment.query_qualities[row.query_position]
if row.alignment.mapping_quality <= 0:
good_read = False
if c_qual < 5:
good_read = False
#remove reads that have been mapped by BWA 'mate rescue'
if row.alignment.has_tag('XT') and row.alignment.get_tag('XT') == 'M':
good_read = False
soft_clip_size = sum( a[1] for a in row.alignment.cigar if a[0] == 4 )
if float(soft_clip_size) / float(row.alignment.query_length) >= 0.3:
good_read = False
if good_read:
good_sread.append( c_read )
good_squal.append( c_qual )
all_sread.append( c_read )
all_squal.append( c_qual )
all_reads.append(all_sread)
all_quals.append(all_squal)
good_reads.append(good_sread)
good_quals.append(good_squal)
sample_fields = []
#for each of the samples, count the reads and average the quailiy scores for the alt reads
for sample_all_reads, sample_all_quals, sample_good_reads, sample_good_quals in zip(all_reads, all_quals, good_reads, good_quals):
out = {}
#create True/False arrays for the reads
refs = map(lambda x: x == rec.ref, sample_all_reads)
alts = map(lambda x: x == rec.alt, sample_all_reads)
good_alts = map(lambda x: x == rec.alt, sample_good_reads)
good_alt_quals = list( q * a for q,a in zip(sample_good_quals, good_alts) )
if sum(good_alts):
out['BQ'] = sum(good_alt_quals) / float(sum(good_alts))
else:
out['BQ'] = 0
out['AD'] = sum(good_alts)
out['DP'] = len(sample_all_reads)
out['DP4'] = len(sample_good_reads)
sample_fields.append(out)
#FIXME: This may also need the SS field to be TCGA compliant
rec.format = "DP:DP4:AD:BQ" #"GT:DP:AD:BQ"
rec.samples = []
for i, c in enumerate(sample_fields):
info = "%d:%d:%d:%d" % ( c['DP'], c['DP4'], c['AD'], c['BQ'] )
rec.samples.append(info)
for b in bams:
b.close()
#FIXME: This assumes that there are not existing FORMAT fields
self.metadata.append( MetaData('##FORMAT=<ID=GT,Number=1,Type=String,Description="Genotype">') )
self.metadata.append( MetaData('##FORMAT=<ID=DP,Number=1,Type=Integer,Description="Read depth at this position in the sample">') )
self.metadata.append( MetaData('##FORMAT=<ID=AD,Number=.,Type=Integer,Description="Depth of reads supporting alleles 0/1/2/3...">') )
self.metadata.append( MetaData('##FORMAT=<ID=BQ,Number=.,Type=Integer,Description="Average base quality for reads supporting alleles">') )
def write(self, handle):
for meta in self.metadata:
handle.write("%s\n" % (meta) )
handle.write("%s\n" % ( "\t".join(self.header.split("\t")[:8] + ['FORMAT'] + self.samples ) ) )
for record in self.records:
handle.write("%s\n" % (record) )
def run_adjust(vcf, samples, out):
input = VCF()
with open(vcf) as handle:
input.parse(handle)
if len(samples) != len(input.samples):
logging.info("Sample MisMatch")
if len(input.samples ) < len(samples):
input.samples += [None] * (len(samples) - len(input.samples))
s = []
for b,c in zip(list(a[0] for a in samples), input.samples):
if c is not None:
s.append(c)
else:
s.append(b)
input.samples = s
input.adjust_format( list(a[1] for a in samples) )
if out is None:
input.write(sys.stdout)
else:
with open(out, "w") as handle:
input.write(handle)
if __name__ == "__main__":
parser = ArgumentParser()
parser.add_argument("vcf")
parser.add_argument("-b", dest="samples", nargs=2, action="append")
parser.add_argument("-o", "--out", default=None)
args = parser.parse_args()
v = vars(args)
run_adjust(**v)