Please refer to our paper
No finetuning on val-split
No extra post-processing (e.g., KNN or test time augmentation techniques)
For LiDAR points that are outside the camera view, we use predictions of SalsaNext instead (mIoU 71.1%).
PMF with ResNet-50 (val 79.4, test 77.0)
{
"iou_per_class" : {
"ignore" : NaN,
"barrier" : 0.8211105017000947 ,
"bicycle" : 0.40331001357418816 ,
"bus" : 0.8094285738418642 ,
"car" : 0.8642617074093626 ,
"construction_vehicle" : 0.6372293564531284 ,
"motorcycle" : 0.7922127573147274 ,
"pedestrian" : 0.7975465273184825 ,
"traffic_cone" : 0.7586693667592976 ,
"trailer" : 0.8117486721972303 ,
"truck" : 0.6705541303436428 ,
"driveable_surface" : 0.9728147267514662 ,
"other_flat" : 0.6769763882499247 ,
"sidewalk" : 0.7805199833640492 ,
"terrain" : 0.7448217093570576 ,
"manmade" : 0.8994327878399728 ,
"vegetation" : 0.8846873564010126
},
"miou" : 0.770332784929719 ,
"freq_weighted_iou" : 0.8934698554118091
}
PMF with ResNet-34 (val 76.9, test 75.5)
nuScenes-lidarseg evaluation for test
{
"iou_per_class" : {
"ignore" : NaN,
"barrier" : 0.8020705030641955 ,
"bicycle" : 0.3566210931187175 ,
"bus" : 0.7969964698841939 ,
"car" : 0.8601428244796276 ,
"construction_vehicle" : 0.6244473195702313 ,
"motorcycle" : 0.7633778382116776 ,
"pedestrian" : 0.769487379072612 ,
"traffic_cone" : 0.73647345145876 ,
"trailer" : 0.7846033037308205 ,
"truck" : 0.6690532353903471 ,
"driveable_surface" : 0.9708182972435588 ,
"other_flat" : 0.6525864086450294 ,
"sidewalk" : 0.7763474699301498 ,
"terrain" : 0.7437597404653619 ,
"manmade" : 0.894987783349729 ,
"vegetation" : 0.8768202551077896
},
"miou" : 0.7549120857951751 ,
"freq_weighted_iou" : 0.8892288961616917
}
PMF with ResNet-50 (mIoU 62.5)
Based on our settings on nuScenes
Use bird-view projection to generate point cloud feature maps
No ImageNet pretrained (Required by the competition)
No finetuning on val-split
No extra post-processing (e.g., KNN or test time augmentation techniques)
PMF with ResNet-101 and wider SalsaNext (Final Results, mIoU 66.2)
Based on our settings on nuScenes
Larger model: ResNet-101 + SalsaNext (1.5x wider)
Use bird-view projection to generate point cloud feature maps
No ImageNet pretrained (Required by the competition)
TrainVal dataset finetuning
Post-processing: KNN and Test Time Augmentation (TTA)