-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathTrainer.py
213 lines (174 loc) · 7.66 KB
/
Trainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
import torch.nn as nn
import torch
import torch.nn.functional as F
import numpy as np
from tqdm import tqdm
from Node import Node
# from losses import GCELoss
KL_Loss = nn.KLDivLoss(reduction='batchmean')
Softmax = nn.Softmax(dim=1)
LogSoftmax = nn.LogSoftmax(dim=1)
CE_Loss = nn.CrossEntropyLoss()
def train_normal(node):
node.model.to(node.device).train()
train_loader = node.train_data
total_loss = 0.0
avg_loss = 0.0
correct = 0.0
acc = 0.0
description = "Training (the {:d}-batch): tra_Loss = {:.4f} tra_Accuracy = {:.2f}%"
with tqdm(train_loader) as epochs:
for idx, (data, target) in enumerate(epochs):
node.optimizer.zero_grad()
epochs.set_description(description.format(idx + 1, avg_loss, acc))
data, target = data.to(node.device), target.to(node.device)
output = node.model(data)
loss = CE_Loss(output, target)
loss.backward()
node.optimizer.step()
total_loss += loss
avg_loss = total_loss / (idx + 1)
pred = output.argmax(dim=1)
correct += pred.eq(target.view_as(pred)).sum()
acc = correct / len(train_loader.dataset) * 100
def train_avg(node):
node.model.to(node.device).train()
train_loader = node.train_data
total_loss = 0.0
avg_loss = 0.0
correct = 0.0
acc = 0.0
description = "Node{:d}: loss={:.4f} acc={:.2f}%"
with tqdm(train_loader) as epochs:
for idx, (data, target) in enumerate(epochs):
node.optimizer.zero_grad()
epochs.set_description(description.format(node.num, avg_loss, acc))
data, target = data.to(node.device), target.to(node.device)
output = node.model(data)
loss = CE_Loss(output, target)
loss.backward()
node.optimizer.step()
total_loss += loss
avg_loss = total_loss / (idx + 1)
pred = output.argmax(dim=1)
correct += pred.eq(target.view_as(pred)).sum()
acc = correct / len(train_loader.dataset) * 100
def train_mutual(node):
node.model.to(node.device).train()
node.global_model.to(node.device).train()
train_loader = node.train_data
total_local_loss = 0.0
avg_local_loss = 0.0
correct_local = 0.0
acc_local = 0.0
total_global_loss = 0.0
avg_global_loss = 0.0
correct_global = 0.0
acc_global = 0.0
description = 'Node{:d}: loss_model={:.4f} acc_model={:.2f}% loss_global={:.4f} acc_global={:.2f}%'
with tqdm(train_loader) as epochs:
for idx, (data, target) in enumerate(epochs):
node.optimizer.zero_grad()
node.global_optimizer.zero_grad()
epochs.set_description(description.format(node.num, avg_local_loss, acc_local, avg_global_loss, acc_global))
data, target = data.to(node.device), target.to(node.device)
output_local = node.model(data)
output_global = node.global_model(data)
ce_local = CE_Loss(output_local, target)
kl_local = KL_Loss(LogSoftmax(output_local), Softmax(output_global.detach()))
ce_global = CE_Loss(output_global, target)
kl_global = KL_Loss(LogSoftmax(output_global), Softmax(output_local.detach()))
loss_local = node.args.alpha * ce_local + (1 - node.args.alpha) * kl_local
loss_global = node.args.beta * ce_global + (1 - node.args.beta) * kl_global
loss_local.backward()
loss_global.backward()
node.optimizer.step()
node.global_optimizer.step()
## loss与acc计算
total_local_loss += loss_local
avg_local_loss = total_local_loss / (idx + 1)
pred_local = output_local.argmax(dim=1)
correct_local += pred_local.eq(target.view_as(pred_local)).sum()
acc_local = correct_local / len(train_loader.dataset) * 100
total_global_loss += loss_global
avg_global_loss = total_global_loss / (idx + 1)
pred_global = output_global.argmax(dim=1)
correct_global += pred_global.eq(target.view_as(pred_global)).sum()
acc_global = correct_global / len(train_loader.dataset) * 100
def train_coteaching(node, epoch, rate_schedule,R, args):
node.model.to(node.device).train()
node.global_model.to(node.device).train()
train_loader = node.train_data
total_local_loss = 0.0
avg_local_loss = 0.0
correct_local = 0.0
acc_local = 0.0
total_global_loss = 0.0
avg_global_loss = 0.0
correct_global = 0.0
acc_global = 0.0
description = 'Node{:d}: loss_model={:.4f} acc_model={:.2f}% loss_global={:.4f} acc_global={:.2f}%'
# with tqdm(train_loader) as epochs:
for idx, (data, target) in enumerate(train_loader):
# epochs.set_description(description.format(node.num, avg_local_loss, acc_local, avg_global_loss, acc_global))
data, target = data.to(node.device), target.to(node.device)
output_local = node.model(data)
output_global = node.global_model(data)
loss_local, loss_global, overlap = loss_coteaching(output_local, output_global, target, rate_schedule[epoch], args)
node.optimizer.zero_grad()
node.global_optimizer.zero_grad()
loss_local.backward()
loss_global.backward()
node.optimizer.step()
node.global_optimizer.step()
# print(idx)
# if epoch ==4:
# node.overlap_sum += overlap
# if idx ==78:
# node.overlap_rate = node.overlap_sum/10000/rate_schedule[epoch]
# print(node.overlap_rate)
# node.overlap_sum = 0
## loss与acc计算
# total_local_loss += loss_local
# avg_local_loss = total_local_loss / (idx + 1)
# pred_local = output_local.argmax(dim=1)
# correct_local += pred_local.eq(target.view_as(pred_local)).sum()
# acc_local = correct_local / len(train_loader.dataset) * 100
# total_global_loss += loss_global
# avg_global_loss = total_global_loss / (idx + 1)
# pred_global = output_global.argmax(dim=1)
# correct_global += pred_global.eq(target.view_as(pred_global)).sum()
# acc_global = correct_global / len(train_loader.dataset) * 100
class Trainer(object):
def __init__(self, args):
if args.algorithm == 'fed_mutual':
self.train = train_mutual
elif args.algorithm == 'fed_avg':
self.train = train_avg
elif args.algorithm == 'fed_coteaching':
self.train = train_coteaching
elif args.algorithm == 'normal':
self.train = train_normal
def __call__(self, node):
self.train(node)
def loss_coteaching(y_1, y_2, t, forget_rate, args):
if args.loss == 'CE':
loss_1 = F.cross_entropy(y_1, t, reduce=False)
loss_2 = F.cross_entropy(y_2, t, reduce=False)
elif args.loss == 'GCE':
loss_1 = GCELoss(y_1, t)
loss_2 = GCELoss(y_2, t)
loss_1 = F.cross_entropy(y_1, t, reduce=False)
ind_1_sorted = torch.argsort(loss_1.data).cuda()
ind_2_sorted = torch.argsort(loss_2.data).cuda()
remember_rate = 1 - forget_rate
num_remember = int(remember_rate * ind_1_sorted.size()[0])
ind_1_update = ind_1_sorted[:num_remember]
ind_2_update = ind_2_sorted[:num_remember]
a = ind_1_update.tolist()
b = ind_2_update.tolist()
ovellap = len(set(a) & set(b))
# exchange
loss_1_update = F.cross_entropy(y_1[ind_2_update], t[ind_2_update])
loss_2_update = F.cross_entropy(y_2[ind_1_update], t[ind_1_update])
return torch.sum(loss_1_update), torch.sum(loss_2_update), ovellap