-
Notifications
You must be signed in to change notification settings - Fork 145
/
imdb.py
121 lines (92 loc) · 3.95 KB
/
imdb.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
########################################################################
#
# Functions for downloading the IMDB Review data-set from the internet
# and loading it into memory.
#
# Implemented in Python 3.6
#
# Usage:
# 1) Set the variable data_dir with the desired storage directory.
# 2) Call maybe_download_and_extract() to download the data-set
# if it is not already located in the given data_dir.
# 3) Call load_data(train=True) to load the training-set.
# 4) Call load_data(train=False) to load the test-set.
# 5) Use the returned data in your own program.
#
# Format:
# The IMDB Review data-set consists of 50000 reviews of movies
# that are split into 25000 reviews for the training- and test-set,
# and each of those is split into 12500 positive and 12500 negative reviews.
# These are returned as lists of strings by the load_data() function.
#
########################################################################
#
# This file is part of the TensorFlow Tutorials available at:
#
# https://github.com/Hvass-Labs/TensorFlow-Tutorials
#
# Published under the MIT License. See the file LICENSE for details.
#
# Copyright 2018 by Magnus Erik Hvass Pedersen
#
########################################################################
import os
import download
import glob
########################################################################
# Directory where you want to download and save the data-set.
# Set this before you start calling any of the functions below.
data_dir = "data/IMDB/"
# URL for the data-set on the internet.
data_url = "http://ai.stanford.edu/~amaas/data/sentiment/aclImdb_v1.tar.gz"
########################################################################
# Private helper-functions.
def _read_text_file(path):
"""
Read and return all the contents of the text-file with the given path.
It is returned as a single string where all lines are concatenated.
"""
with open(path, 'rt') as file:
# Read a list of strings.
lines = file.readlines()
# Concatenate to a single string.
text = " ".join(lines)
return text
########################################################################
# Public functions that you may call to download the data-set from
# the internet and load the data into memory.
def maybe_download_and_extract():
"""
Download and extract the IMDB Review data-set if it doesn't already exist
in data_dir (set this variable first to the desired directory).
"""
download.maybe_download_and_extract(url=data_url, download_dir=data_dir)
def load_data(train=True):
"""
Load all the data from the IMDB Review data-set for sentiment analysis.
:param train: Boolean whether to load the training-set (True)
or the test-set (False).
:return: A list of all the reviews as text-strings,
and a list of the corresponding sentiments
where 1.0 is positive and 0.0 is negative.
"""
# Part of the path-name for either training or test-set.
train_test_path = "train" if train else "test"
# Base-directory where the extracted data is located.
dir_base = os.path.join(data_dir, "aclImdb", train_test_path)
# Filename-patterns for the data-files.
path_pattern_pos = os.path.join(dir_base, "pos", "*.txt")
path_pattern_neg = os.path.join(dir_base, "neg", "*.txt")
# Get lists of all the file-paths for the data.
paths_pos = glob.glob(path_pattern_pos)
paths_neg = glob.glob(path_pattern_neg)
# Read all the text-files.
data_pos = [_read_text_file(path) for path in paths_pos]
data_neg = [_read_text_file(path) for path in paths_neg]
# Concatenate the positive and negative data.
x = data_pos + data_neg
# Create a list of the sentiments for the text-data.
# 1.0 is a positive sentiment, 0.0 is a negative sentiment.
y = [1.0] * len(data_pos) + [0.0] * len(data_neg)
return x, y
########################################################################