forked from mahaitongdae/CLF-CBF-QP
-
Notifications
You must be signed in to change notification settings - Fork 0
/
problem_instance.m
272 lines (249 loc) · 10.2 KB
/
problem_instance.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
classdef problem_instance < handle
properties
A
B
k = 1.0
jankovic_gain = 1.0
P
Q
q
r
sysdim
ax
ay
ux
uy
limits
x
numtrajectories = 0
end
methods
function self = problem_instance(A,B,P,Q,q,r)
self.A = A;
self.B = B;
self.P = P;
self.Q = Q;
self.q = q;
self.r = r;
self.sysdim = size(A,2);
end
% SOLVE CLF - CBF OPTIMIZATION PROBLEM
% Uses CPLEX to solve
% minimize 0.5*u'*H(x)*u + k*delta^2
% s. t. LfV(x) + LgV(x)u <= -gamma(V(x)) + delta
% Lfh(x) + Lgh(x)u >= -alpha(h(x))
%
% By expressing it as:
% minimize 0.5*x'*H*x
% s. t. Aineq*x <= bineq
%
% Sample use:
% u = CLF_CBF_QP(x,Q,q,r);
% [u, lambda] = CLF_CBF_QP(x,Q,q,r);
%
% INPUT: Elliptical obstacle parameters Q, q, r
% Current state x
% OUTPUT: Optimal control input for above QP u
% Correspdonding dual variables lambda
%[u(i,:) lambda] = Jankovic_CLF_CBF_QP(x(i-1,:),Q,q,r);
function [optimal_u, dual_variables, delta] = CLF_CBF_QP(self,x)
H = [eye(self.sysdim) zeros(self.sysdim,1); zeros(1,self.sysdim) 2.0*self.k]; % construct H
Aineq = [self.LgV(x) -1; -self.Lgh(x) 0]; % construct Aineq
bineq = [-self.gain_gamma(self.V(x))-self.LfV(x); self.Lfh(x)+self.gain_alpha(self.h(x))]; % construct bineq
f = zeros(1,self.sysdim+1); % construct f (zero)
[u_opt, ~, ~, ~, lambda] = cplexqp(H,f,Aineq,bineq);
dual_variables = lambda.ineqlin;
delta = u_opt(end);
optimal_u = u_opt(1:self.sysdim);
end
% JANKOVIC's MODIFIED CLF - CBF OPTIMIZATION PROBLEM
% Uses CPLEX to solve
% minimize 0.5*u'*H*u + k*delta'*delta
% s. t. LfV(x) + LgV(x)u <= -gamma(V(x)) - LgV(x)*delta
% Lfh(x) + Lgh(x)u >= -alpha(h(x))
%
% Sample use:
% u = Jankovic_CLF_CBF_QP(x,Q,q,r);
% [u, lambda] = Jankovic_CLF_CBF_QP(x,Q,q,r);
%
% INPUT: Elliptical obstacle parameters Q, q, r
% Current state x
% OUTPUT: Optimal control input for above QP u
% Correspdonding dual variables lambda
%[u(i,:) lambda] = Jankovic_CLF_CBF_QP(x(i-1,:),Q,q,r);
function [optimal_u, dualvars, delta] = Jankovic_CLF_CBF_QP(self,x)
H = blkdiag(eye(self.sysdim), eye(self.sysdim)*self.k); % construct H
Aineq = [self.LgV(x) self.LgV(x);
-self.Lgh(x) zeros(1,self.sysdim)]; % construct Aineq
bineq = [-self.jankovic_gamma(self.V(x)+self.LfV(x));
self.Lfh(x)+self.gain_alpha(self.h(x))]; % construct bineq
f = zeros(1,self.sysdim*2); % construct f (zero)
[u_opt, ~, ~, ~, lambda] = cplexqp(H,f,Aineq,bineq);
dualvars = lambda.ineqlin;
delta = u_opt(self.sysdim+1:end);
optimal_u = u_opt(1:self.sysdim);
end
% Differential equations governing motion
function odefcn = xdot(self,t,x,u)
odefcn = self.A*x + self.B*(u);
end
% Lyapunov function for system
% V(x) = x'*P*x
function lyapunov_V = V(self,x)
lyapunov_V = x*self.P*x';
end
% VECTOR FUNCTIONS INPUT AND RETURN A ROW VECTOR
% Lie derivative of Lyapunov function along f
function Lie_fV = LfV(self,x)
Lie_fV = x*(self.P*self.A + (self.A)'*self.P)*(x');
end
% Lie derivative of Lyapunov function along g
function Lie_gV = LgV(self,x)
Lie_gV = 2*x*self.P*self.B;
end
% Safety function for forward invariance outside ellipse
function safety_h = h(self,x)
safety_h = (x-self.q)*self.Q*(x-self.q)'-self.r^2;
end
function obst_test = in_obstacle(self, x)
%state = x - self.q;
obst_test = ((x-self.q)*self.Q*(x-self.q)' < self.r^2);
end
% Lie derivative of safety function along f(x)
function Lie_fh = Lfh(self,x)
Lie_fh = 2*(x-self.q)*self.Q*self.A*(x');
end
% Lie derivative of safety function along g(x)
function Lie_gh = Lgh(self,x)
Lie_gh = 2*(x-self.q)*self.Q*self.B;
end
% Class K-infinity function alpha
% Characterizes gain on safety inequality
function a = gain_alpha(self,x)
a = x;
end
% Class K-infinity function gamma
% Characterizes gain on Lyapunov function inequality
function g = gain_gamma(self,x)
g = x;
end
% Gain function gamma defined in Jankovic (2018)
% applies a positive, >= 1 gain if argument is positive
% applies no gain otherwise
function gamma = jankovic_gamma(self,x)
if (x < 0)
gamma = x;
else
gamma = self.jankovic_gain*x;
end
end
function generate_trajectories(self,method,x0,tsteps)
% GENERATE TRAJECTORY
%x0 = [x0_1 ; x0_2 ;...]
% each row of x0 is a starting point for x
self.numtrajectories = size(x0,1);
stepsize = 1E-3; % step size between iterations
%u = zeros(tsteps,sysdim,numtrajectories); % create vector of inputs
self.x = zeros(tsteps,self.sysdim,self.numtrajectories); % create vector of states
t = linspace(0,stepsize*tsteps,tsteps); % generate vector of times
self.x(1,:,:) = x0;
if method == 'standard'
for j = 1:self.numtrajectories
for i = 2:tsteps
% SOLVE STANDARD CLF - CBF OPTIMIZATION PROBLEM
u = self.CLF_CBF_QP(self.x(i-1,:,j));
% PERFORM INTEGRATION STEP
% Using ode45 for laziness
tspan = [t(i-1),t(i)]; % time interval for current iteration
[~, sol_x] = ode45(@(t,y) self.xdot(t,y,u), tspan, self.x(i-1,:,j)); % use ode45 to integrate
self.x(i,:,j) = sol_x(end,:);
end
end
elseif method == 'jankovic'
for j = 1:self.numtrajectories
for i = 2:tsteps
% SOLVE STANDARD CLF - CBF OPTIMIZATION PROBLEM
u = self.Jankovic_CLF_CBF_QP(self.x(i-1,:,j));
% PERFORM INTEGRATION STEP
% Using ode45 for laziness
tspan = [t(i-1),t(i)]; % time interval for current iteration
[~, sol_x] = ode45(@(t,y) self.xdot(t,y,u), tspan, self.x(i-1,:,j)); % use ode45 to integrate
self.x(i,:,j) = sol_x(end,:);
end
end
end
end
function vector_field(self, method, input_limits)
% GENERATE VECTOR FIELD FOR INPUTS
% limits = [xmin xmax ymin ymax]
% method is a STRING 'standard' or 'jankovic'
self.limits = input_limits;
xrange = linspace(self.limits(1),self.limits(2),100);
yrange = [self.limits(3):(xrange(2)-xrange(1)):self.limits(4)];
%xrange = [-4:0.1:4];
%yrange = [0:0.1:8];
[x, y] = meshgrid(xrange,yrange);
self.ux = x;
self.uy = y;
self.ax = x;
self.ay = y;
if method == 'standard'
for i = 1:size(self.ax,1)
for j = 1:size(self.ax,2)
state = [self.ax(i,j) self.ay(i,j)];
if state == self.q
self.ux(i,j) = 0;
self.uy(i,j) = 0;
self.ax(i,j) = 0;
self.ay(i,j) = 0;
continue
end
u_opt = self.CLF_CBF_QP(state);
self.ux(i,j) = u_opt(1)/sqrt(u_opt(1)^2 + u_opt(2)^2);
self.uy(i,j) = u_opt(2)/sqrt(u_opt(1)^2 + u_opt(2)^2);
%for not-normalized vector field
%plotux(i,j) = u_opt(1);
%plotuy(i,j) = u_opt(2);
end
end
elseif method == 'jankovic'
for i = 1:size(self.ax,1)
for j = 1:size(self.ax,2)
state = [self.ax(i,j) self.ay(i,j)];
if state == self.q
self.ux(i,j) = 0;
self.uy(i,j) = 0;
self.ax(i,j) = 0;
self.ay(i,j) = 0;
continue
end
u_opt = self.Jankovic_CLF_CBF_QP(state);
self.ux(i,j) = u_opt(1)/sqrt(u_opt(1)^2 + u_opt(2)^2);
self.uy(i,j) = u_opt(2)/sqrt(u_opt(1)^2 + u_opt(2)^2);
%for not-normalized vector field
%plotux(i,j) = u_opt(1);
%plotuy(i,j) = u_opt(2);
end
end
end
end
function make_plot(self)
% PLOT ELLIPTICAL OBSTACLE
L = chol(self.Q);
ellipse_pts = linspace(0,2*pi,300);
z = [cos(ellipse_pts); sin(ellipse_pts)]*self.r; % creates circle of correct radius
%R = rotation_matrix(pi/4);
ellipse = L^-1 * z + self.q'; % stretch and translate circle appropriately
% PLOT GENERATED TRAJECTORY and VECTOR FIELD
axis(self.limits);
hold on
plot(ellipse(1,:),ellipse(2,:),'black','LineWidth',3)
quiver(self.ax,self.ay,self.ux,self.uy,'red')
for i = 1:self.numtrajectories
scatter(self.x(1,1,i),self.x(1,2,i),50,'blue','filled')
plot(self.x(:,1,i),self.x(:,2,i),'blue','LineWidth',2)
end
%legend('Obstacle Boundary','Input Vector','Initial State','Trajectory')
end
end
end