-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathtrain_joint_radar_lidar.py
118 lines (83 loc) · 3.84 KB
/
train_joint_radar_lidar.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
from torch.utils.data import Dataset, DataLoader
import torch
import torch.nn as nn
import os
import sys
import time
import numpy as np
from torch.utils.tensorboard import SummaryWriter
from loader.data_loader_train_triplet import dataLoader_train
from network.radar_coder import radar_coder
from loss.triplet_loss_fft import triplet_loss
batch_size = 16
# SC_H = 80
# SC_W = 120
SC_H = 40
SC_W = 120
num_epoch = 10
iter_train = 512
l_rate = 0.001
decay = 0.999
w_decay = 0.001
# margin value for loss
margin = 1
# alpha
# alpha = 10
lamda = 1
# train on part of Oxford-seq01
root_txt = '/home/yinhuan/Data/radar_lidar_pr/exp/01.12_label/train_oxford_01_triplet.txt'
root_radar = '/home/yinhuan/Data/radar_lidar_pr/Oxford/seq01_80/radar_sc/'
# root_lidar = '/home/yinhuan/Data/radar_lidar_pr/Oxford/seq01_80/lidar_sc_density/'
# root_lidar = '/home/yinhuan/Data/radar_lidar_pr/Oxford/seq01_80/lidar_sc_density_raw/'
root_lidar = '/home/yinhuan/Data/radar_lidar_pr/Oxford/seq01_80/lidar_sc_occupy/'
date = '01.18_radar_lidar_pr_joint'
if __name__ == "__main__":
device = 'cuda:3'
if not os.path.exists('/home/yinhuan/radar_lidar_place_recognition/models/' + date):
os.mkdir('/home/yinhuan/radar_lidar_place_recognition/models/' + date)
if not os.path.exists('/home/yinhuan/radar_lidar_place_recognition/log/' + date):
os.mkdir('/home/yinhuan/radar_lidar_place_recognition/log/' + date)
print('Build Model')
radar_coder = radar_coder().to(device)
radar_coder.train()
# loss
triplet_loss = triplet_loss(margin, lamda, batch_size, SC_H, SC_W).to(device)
writer = SummaryWriter('/home/yinhuan/radar_lidar_place_recognition/log/' + date)
for epoch in range(num_epoch):
print('epoch ' + str(epoch))
# dataloader init and shuffle
dataLoader_ = dataLoader_train(batch_size*iter_train,\
root_txt, root_radar, root_lidar, batch_size, SC_H, SC_W, shuffle=True)
# lr-reset for optimizer
optimizer = torch.optim.Adam(list(radar_coder.parameters()),\
lr=l_rate, weight_decay=w_decay)
for iter_ in range(iter_train):
print('----------------------------------------------------' + str(iter_))
t0 = time.time()
radar_batch, lidar_batch = dataLoader_.get_data\
(iter_, device)
# coder radar and lidar for fft
radar_feature_batch = radar_coder(radar_batch)
lidar_feature_batch = radar_coder(lidar_batch)
loss_triplet, radar_fft, lidar_fft = triplet_loss(radar_feature_batch, lidar_feature_batch)
# loss = alpha * loss_trans + loss_quad
loss = loss_triplet
optimizer.zero_grad()
loss.backward()
optimizer.step()
# print('%s %f %s %f'%('loss_trans:', loss_trans.data, 'loss_quad:', loss_quad.data))
print('[%d/%d] %s %f %s %f'%(epoch, iter_, 'Loss:', loss.data, ' lr:', l_rate))
print('time: ', time.time() - t0)
# learning rate reduction
l_rate*=decay
optimizer = torch.optim.Adam(list(radar_coder.parameters()),\
lr=l_rate, weight_decay=w_decay)
# writer.add_scalar(date+'/Loss_translation', loss_trans, epoch*iter_train + iter_)
# writer.add_scalar(date+'/Loss_quad', loss_quad, epoch*iter_train + iter_)
# images = torch.cat([radar_batch[0].unsqueeze(0), radar_feature_batch[0].unsqueeze(0),\
# lidar_batch[0].unsqueeze(0), lidar_feature_batch[0].unsqueeze(0)])
# writer.add_images(date+'/Images', images, iter_)
# save at the last
torch.save(radar_coder.state_dict(), \
'/home/yinhuan/radar_lidar_place_recognition/models/' + date + '/%s_model_%d.pth' % ('radar_coder', epoch))
print('Finished')