forked from ZouJiu1/Mask_face_recognitionZ
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathvalidation_NOTLFW.py
149 lines (141 loc) · 6.24 KB
/
validation_NOTLFW.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
import torch
import os
import sys
from torch.nn.modules.distance import PairwiseDistance
l2_distance = PairwiseDistance(2)#.cuda()
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
pwd = os.path.abspath('./')
version = 'V3'
mask = False #是否给人脸戴口罩
if version=='V1':
from Models.CBAM_Face_attention_Resnet_maskV1 import resnet18_cbam, resnet50_cbam, resnet101_cbam, resnet34_cbam, \
resnet152_cbam
elif version=='V2':
from Models.CBAM_Face_attention_Resnet_maskV2 import resnet18_cbam, resnet50_cbam, resnet101_cbam, resnet34_cbam, \
resnet152_cbam
elif version=='V3':
from Models.CBAM_Face_attention_Resnet_notmaskV3 import resnet18_cbam, resnet50_cbam, resnet101_cbam, resnet34_cbam, \
resnet152_cbam
import numpy as np
import tqdm
from config_mask import config
from validate_on_LFW import evaluate_lfw
from torch.nn.modules.distance import PairwiseDistance
from Data_loader.Data_loader_facenet_mask import NOTLFWestMask_dataloader
from Data_loader.Data_loader_facenet_notmask import NOTLFWestNOTMask_dataloader
if config['model'] == 18:
model = resnet18_cbam(pretrained=True, showlayer= False,num_classes=128)
elif config['model'] == 34:
model = resnet34_cbam(pretrained=True, showlayer= False, num_classes=128)
elif config['model'] == 50:
model = resnet50_cbam(pretrained=True, showlayer= False, num_classes=128)
elif config['model'] == 101:
model = resnet101_cbam(pretrained=True, showlayer= False, num_classes=128)
elif config['model'] == 152:
model = resnet152_cbam(pretrained=True, showlayer= False, num_classes=128)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model_path = os.path.join(pwd, 'Model_training_checkpoints')
x = [int(i.split('_')[4]) for i in os.listdir(model_path) if version in i]
x.sort()
for i in os.listdir(model_path):
if (len(x)!=0) and ('epoch_'+str(x[-1]) in i) and (version in i):
model_pathi = os.path.join(model_path, i)
break
if version=='V1':
model_pathi = os.path.join(model_path, 'model_34_triplet_epoch_30_rocNotMasked0.819_rocMasked0.764maskV1.pt')
elif version=='V2':
model_pathi = os.path.join(model_path, 'model_34_triplet_epoch_27_rocNotMasked0.919_rocMasked0.798notmaskV2.pt')
elif version=='V3':
model_pathi = os.path.join(model_path, 'model_34_triplet_epoch_97_rocNotMasked0.951_rocMasked0.766notmaskV3.pt')
elif version=='V6':
model_pathi = os.path.join(model_path, 'model_34_triplet_epoch_63_rocNotMasked0.922_rocMasked0.834maskV6.pt')
elif version=='V8':
model_pathi = os.path.join(model_path, 'model_34_triplet_epoch_39_rocNotMasked0.926_rocMasked0.856maskV8.pt')
elif version=='V9':
model_pathi = os.path.join(model_path, 'model_34_triplet_epoch_19_rocNotMasked0.918_rocMasked0.831notmaskV9.pt')
print(model_path)
if os.path.exists(model_pathi) and (version in model_pathi):
if torch.cuda.is_available():
model_state = torch.load(model_pathi)
else:
model_state = torch.load(model_pathi, map_location='cpu')
model.load_state_dict(model_state['model_state_dict'])
start_epoch = model_state['epoch']
print('loaded %s' % model_pathi)
else:
print('不存在预训练模型!')
sys.exit(0)
if torch.cuda.is_available():
model.cuda()
model.eval()
print('开始测试验证集')
with torch.no_grad(): # 不传梯度了
distances, labels = [], []
# progress_bar = enumerate(tqdm(NOTLFWestMask_dataloader))
# for batch_index, (data_a, data_b, label) in progress_bar:
for batch_index, (data_a, data_b, label) in enumerate(NOTLFWestNOTMask_dataloader):
# data_a, data_b, label这仨是一批的矩阵
data_a = data_a.cuda()
data_b = data_b.cuda()
label = label.cuda()
output_a, output_b = model(data_a), model(data_b)
output_a = torch.div(output_a, torch.norm(output_a))
output_b = torch.div(output_b, torch.norm(output_b))
distance = l2_distance.forward(output_a, output_b)
# 列表里套矩阵
labels.append(label.cpu().detach().numpy())
distances.append(distance.cpu().detach().numpy())
# 展平
labels = np.array([sublabel for label in labels for sublabel in label])
distances = np.array([subdist for distance in distances for subdist in distance])
true_positive_rate, false_positive_rate, precision, recall, accuracy, roc_auc, best_distances, \
tar, far = evaluate_lfw(
distances=distances,
labels=labels,
pltshow=True
)
# 打印日志内容
print('test_log:\tAUC: {:.4f}\tACC: {:.4f}+-{:.4f}\trecall: {:.4f}+-{:.4f}\tPrecision {:.4f}+-{:.4f}\t'.format(
roc_auc,
np.mean(accuracy),
np.std(accuracy),
np.mean(recall),
np.std(recall),
np.mean(precision),
np.std(precision))+'\tbest_distance:{:.4f}\t'.format(np.mean(best_distances))
)
with torch.no_grad(): # 不传梯度了
distances, labels = [], []
# progress_bar = enumerate(tqdm(NOTLFWestMask_dataloader))
# for batch_index, (data_a, data_b, label) in progress_bar:
for batch_index, (data_a, data_b, label) in enumerate(NOTLFWestMask_dataloader):
# data_a, data_b, label这仨是一批的矩阵
data_a = data_a.cuda()
data_b = data_b.cuda()
label = label.cuda()
output_a, output_b = model(data_a), model(data_b)
output_a = torch.div(output_a, torch.norm(output_a))
output_b = torch.div(output_b, torch.norm(output_b))
distance = l2_distance.forward(output_a, output_b)
# 列表里套矩阵
labels.append(label.cpu().detach().numpy())
distances.append(distance.cpu().detach().numpy())
# 展平
labels = np.array([sublabel for label in labels for sublabel in label])
distances = np.array([subdist for distance in distances for subdist in distance])
true_positive_rate, false_positive_rate, precision, recall, accuracy, roc_auc, best_distances, \
tar, far = evaluate_lfw(
distances=distances,
labels=labels,
pltshow=True
)
# 打印日志内容
print('MASKED_test_log:\tAUC: {:.4f}\tACC: {:.4f}+-{:.4f}\trecall: {:.4f}+-{:.4f}\tPrecision {:.4f}+-{:.4f}\t'.format(
roc_auc,
np.mean(accuracy),
np.std(accuracy),
np.mean(recall),
np.std(recall),
np.mean(precision),
np.std(precision))+'\tbest_distance:{:.4f}\t'.format(np.mean(best_distances))
)