forked from ZouJiu1/Mask_face_recognitionZ
-
Notifications
You must be signed in to change notification settings - Fork 1
/
validation_LFW.py
159 lines (153 loc) · 6.75 KB
/
validation_LFW.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
import torch
import os
import numpy as np
from config_mask import config
import os
from validate_on_LFW import evaluate_lfw
from torch.nn.modules.distance import PairwiseDistance
import sys
from Data_loader.Data_loader_facenet_mask import train_dataloader, test_dataloader, LFWestMask_dataloader
os.environ["CUDA_VISIBLE_DEVICES"] = "1"
pwd = os.path.abspath('./')
version = 'V9'
if version=='V1':
from Models.CBAM_Face_attention_Resnet_maskV1 import resnet18_cbam, resnet50_cbam, resnet101_cbam, resnet34_cbam, \
resnet152_cbam
elif version=='V6':
from Models.Resnet34 import resnet34 as resnet34_cbam
elif version=='V2':
from Models.CBAM_Face_attention_Resnet_maskV2 import resnet18_cbam, resnet50_cbam, resnet101_cbam, resnet34_cbam, \
resnet152_cbam
elif version=='V8':
from Models.Resnet34_attention import resnet34 as resnet34_cbam
elif (version=='V3') or (version=='V9'):
from Models.CBAM_Face_attention_Resnet_notmaskV3 import resnet18_cbam, resnet50_cbam, resnet101_cbam, resnet34_cbam, \
resnet152_cbam
model_path = os.path.join(pwd, 'Model_training_checkpoints')
if config['model'] == 18:
model = resnet18_cbam(pretrained=True, showlayer= False,num_classes=128)
elif config['model'] == 34:
model = resnet34_cbam(pretrained=True, showlayer= False, num_classes=128)
elif config['model'] == 50:
model = resnet50_cbam(pretrained=True, showlayer= False, num_classes=128)
elif config['model'] == 101:
model = resnet101_cbam(pretrained=True, showlayer= False, num_classes=128)
elif config['model'] == 152:
model = resnet152_cbam(pretrained=True, showlayer= False, num_classes=128)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model_path = os.path.join(pwd, 'Model_training_checkpoints')
x = [int(i.split('_')[4]) for i in os.listdir(model_path) if version in i]
x.sort()
for i in os.listdir(model_path):
if (len(x)!=0) and ('epoch_'+str(x[-1]) in i) and (version in i):
model_pathi = os.path.join(model_path, i)
break
if version=='V1':
model_pathi = os.path.join(model_path, 'model_34_triplet_epoch_30_rocNotMasked0.819_rocMasked0.764maskV1.pt')
elif version=='V2':
model_pathi = os.path.join(model_path, 'model_34_triplet_epoch_27_rocNotMasked0.919_rocMasked0.798notmaskV2.pt')
elif version=='V3':
model_pathi = os.path.join(model_path, 'model_34_triplet_epoch_97_rocNotMasked0.951_rocMasked0.766notmaskV3.pt')
elif version=='V6':
model_pathi = os.path.join(model_path, 'model_34_triplet_epoch_63_rocNotMasked0.922_rocMasked0.834maskV6.pt')
elif version=='V8':
model_pathi = os.path.join(model_path, 'model_34_triplet_epoch_39_rocNotMasked0.926_rocMasked0.856maskV8.pt')
elif version=='V9':
model_pathi = os.path.join(model_path, 'model_34_triplet_epoch_19_rocNotMasked0.918_rocMasked0.831notmaskV9.pt')
print(model_path)
if os.path.exists(model_pathi) and (version in model_pathi):
if torch.cuda.is_available():
model_state = torch.load(model_pathi)
else:
model_state = torch.load(model_pathi, map_location='cpu')
model.load_state_dict(model_state['model_state_dict'])
start_epoch = model_state['epoch']
print('loaded %s' % model_pathi)
else:
print('不存在预训练模型!')
sys.exit(0)
if torch.cuda.is_available():
model.cuda()
l2_distance = PairwiseDistance(2).cuda()
# 出测试集准确度
print("Validating on TestDataset! ...")
model.eval() # 验证模式
with torch.no_grad(): # 不传梯度了
distances, labels = [], []
# print(1111111111, type(test_dataloader))
# print(test_dataloader[0])
# progress_bar = enumerate(tqdm(test_dataloader))
# for batch_index, (data_a, data_b, label) in progress_bar:
for batch_index, (data_a, data_b, label) in enumerate(test_dataloader):
# data_a, data_b, label这仨是一批的矩阵
data_a = data_a.cuda()
data_b = data_b.cuda()
label = label.cuda()
output_a, output_b = model(data_a), model(data_b)
output_a = torch.div(output_a, torch.norm(output_a))
output_b = torch.div(output_b, torch.norm(output_b))
distance = l2_distance.forward(output_a, output_b)
# 列表里套矩阵
labels.append(label.cpu().detach().numpy())
distances.append(distance.cpu().detach().numpy())
# 展平
labels = np.array([sublabel for label in labels for sublabel in label])
distances = np.array([subdist for distance in distances for subdist in distance])
true_positive_rate, false_positive_rate, precision, recall, accuracy, roc_auc, best_distances, \
tar, far = evaluate_lfw(
distances=distances,
labels=labels,
epoch='',
tag='NOTMaskedLFW_aucnotmask_valid',
version=version,
pltshow=True
)
print("Validating on LFWMASKTestDataset! ...")
with torch.no_grad(): # 不传梯度了
distances, labels = [], []
# progress_bar = enumerate(tqdm(LFWestMask_dataloader))
# for batch_index, (data_a, data_b, label) in progress_bar:
for batch_index, (data_a, data_b, label) in enumerate(LFWestMask_dataloader):
# data_a, data_b, label这仨是一批的矩阵
data_a = data_a.cuda()
data_b = data_b.cuda()
label = label.cuda()
output_a, output_b = model(data_a), model(data_b)
output_a = torch.div(output_a, torch.norm(output_a))
output_b = torch.div(output_b, torch.norm(output_b))
distance = l2_distance.forward(output_a, output_b)
# 列表里套矩阵
labels.append(label.cpu().detach().numpy())
distances.append(distance.cpu().detach().numpy())
# 展平
labels = np.array([sublabel for label in labels for sublabel in label])
distances = np.array([subdist for distance in distances for subdist in distance])
true_positive_rate_mask, false_positive_rate_mask, precision_mask, recall_mask, \
accuracy_mask, roc_auc_mask, best_distances_mask, \
tar_mask, far_mask = evaluate_lfw(
distances=distances,
labels=labels,
epoch='',
tag='MaskedLFW_aucmask_valid',
version=version,
pltshow=True
)
# 打印日志内容
print('LFW没带口罩的结果test_log:\tAUC: {:.3f}\tACC: {:.3f}+-{:.3f}\trecall: {:.3f}+-{:.3f}\tPrecision {:.3f}+-{:.3f}\t'.format(
roc_auc,
np.mean(accuracy),
np.std(accuracy),
np.mean(recall),
np.std(recall),
np.mean(precision),
np.std(precision))+'\tbest_distance:{:.3f}\t'.format(np.mean(best_distances))
)
print('\nLFW带口罩的结果test_log:\tAUC: {:.3f}\tACC: {:.3f}+-{:.3f}\trecall: {:.3f}+-{:.3f}\tPrecision {:.3f}+-{:.3f}\t'.format(
roc_auc_mask,
np.mean(accuracy_mask),
np.std(accuracy_mask),
np.mean(recall_mask),
np.std(recall_mask),
np.mean(precision_mask),
np.std(precision_mask))+'\tbest_distance:{:.3f}\t'.format(np.mean(best_distances_mask))
)