-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathda_utils_lmr.py
209 lines (160 loc) · 7.47 KB
/
da_utils_lmr.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
#==========================================================================================
# This script contains functions developed for the LMR project.
# Originators: G. Hakim and R. Tardif.
# The LMR code is available at: https://github.com/modons/LMR
#
# The source files in the LMR project are:
# LMR_DA.py
# - enkf_update_array (unaltered)
# - cov_localization (minor changes)
# LMR_utils.py
# - haversine: (unaltered)
#
#==========================================================================================
import numpy as np
def enkf_update_array(Xb, obvalue, Ye, ob_err, loc=None, inflate=None):
"""
Function to do the ensemble square-root filter (EnSRF) update
(ref: Whitaker and Hamill, Mon. Wea. Rev., 2002)
Originator: G. J. Hakim, with code borrowed from L. Madaus
Dept. Atmos. Sciences, Univ. of Washington
Revisions:
1 September 2017:
- changed varye = np.var(Ye) to varye = np.var(Ye,ddof=1)
for an unbiased calculation of the variance.
(G. Hakim - U. Washington)
-----------------------------------------------------------------
Inputs:
Xb: background ensemble estimates of state (Nx x Nens)
obvalue: proxy value
Ye: background ensemble estimate of the proxy (Nens x 1)
ob_err: proxy error variance
loc: localization vector (Nx x 1) [optional]
inflate: scalar inflation factor [optional]
"""
# Get ensemble size from passed array: Xb has dims [state vect.,ens. members]
Nens = Xb.shape[1]
# ensemble mean background and perturbations
xbm = np.mean(Xb,axis=1)
Xbp = np.subtract(Xb,xbm[:,None]) # "None" means replicate in this dimension
# ensemble mean and variance of the background estimate of the proxy
mye = np.mean(Ye)
varye = np.var(Ye,ddof=1)
# lowercase ye has ensemble-mean removed
ye = np.subtract(Ye, mye)
# innovation
try:
innov = obvalue - mye
except:
print('innovation error. obvalue = ' + str(obvalue) + ' mye = ' + str(mye))
print('returning Xb unchanged...')
return Xb
# innovation variance (denominator of serial Kalman gain)
kdenom = (varye + ob_err)
# numerator of serial Kalman gain (cov(x,Hx))
kcov = np.dot(Xbp,np.transpose(ye)) / (Nens-1)
# Option to inflate the covariances by a certain factor
#if inflate is not None:
# kcov = inflate * kcov # This implementation is not correct. To be revised later.
# Option to localize the gain
if loc is not None:
kcov = np.multiply(kcov,loc)
# Kalman gain
kmat = np.divide(kcov, kdenom)
# update ensemble mean
xam = xbm + np.multiply(kmat,innov)
# update the ensemble members using the square-root approach
beta = 1./(1. + np.sqrt(ob_err/(varye+ob_err)))
kmat = np.multiply(beta,kmat)
ye = np.array(ye)[np.newaxis]
kmat = np.array(kmat)[np.newaxis]
Xap = Xbp - np.dot(kmat.T, ye)
# full state
Xa = np.add(xam[:,None], Xap)
# if masked array, making sure that fill_value = nan in the new array
if np.ma.isMaskedArray(Xa): np.ma.set_fill_value(Xa, np.nan)
# Return the full state
return Xa
#==========================================================================================
#
#==========================================================================================
def haversine(lon1, lat1, lon2, lat2):
"""
Calculate the great circle distance between two points
on the earth (specified in decimal degrees)
"""
# convert decimal degrees to radians
lon1, lat1, lon2, lat2 = list(map(np.radians, [lon1, lat1, lon2, lat2]))
# haversine formula
dlon = lon2 - lon1
dlat = lat2 - lat1
a = np.sin(dlat/2.)**2 + np.cos(lat1) * np.cos(lat2) * np.sin(dlon/2.)**2
c = 2 * np.arcsin(np.sqrt(a))
km = 6367.0 * c
return km
def cov_localization(locRad, proxy_lat, proxy_lon, X_coords):
"""
Originator: R. Tardif,
Dept. Atmos. Sciences, Univ. of Washington
-----------------------------------------------------------------
Inputs:
locRad : Localization radius (distance in km beyond which cov are forced to zero)
Y : Proxy object, needed to get ob site lat/lon (to calculate distances w.r.t. grid pts
X : Prior object, needed to get state vector info.
X_coords : Array containing geographic location information of state vector elements
Output:
covLoc : Localization vector (weights) applied to ensemble covariance estimates.
Dims = (Nx x 1), with Nx the dimension of the state vector.
Note: Uses the Gaspari-Cohn localization function.
"""
# declare the localization array, filled with ones to start with (as in no localization)
stateVectDim = X_coords.shape[0]
covLoc = np.ones(shape=[stateVectDim],dtype=np.float64)
# Mask to identify elements of state vector that are "localizeable"
# i.e. fields with (lat,lon)
localizeable = covLoc == 1. # Initialize as True
#for var in X.trunc_state_info.keys():
# [var_state_pos_begin,var_state_pos_end] = X.trunc_state_info[var]['pos']
# # if variable is not a field with lats & lons, tag localizeable as False
# if X.trunc_state_info[var]['spacecoords'] != ('lat', 'lon'):
# localizeable[var_state_pos_begin:var_state_pos_end+1] = False
# array of distances between state vector elements & proxy site
# initialized as zeros: this is important!
dists = np.zeros(shape=[stateVectDim])
# geographic location of proxy site
site_lat = proxy_lat
site_lon = proxy_lon
# geographic locations of elements of state vector
X_lon = X_coords[:,1]
X_lat = X_coords[:,0]
# calculate distances for elements tagged as "localizeable".
#print(site_lon,site_lat,type(site_lon),type(site_lat))
dists[localizeable] = np.array(haversine(site_lon, site_lat,
X_lon[localizeable],
X_lat[localizeable]),dtype=np.float64)
# those not "localizeable" are assigned with a disdtance of "nan"
# so these elements will not be included in the indexing
# according to distances (see below)
dists[~localizeable] = np.nan
# Some transformation to variables used in calculating localization weights
hlr = 0.5*locRad; # work with half the localization radius
r = dists/hlr;
# indexing w.r.t. distances
ind_inner = np.where(dists <= hlr) # closest
ind_outer = np.where(dists > hlr) # close
ind_out = np.where(dists > 2.*hlr) # out
# Gaspari-Cohn function
# for pts within 1/2 of localization radius
covLoc[ind_inner] = (((-0.25*r[ind_inner]+0.5)*r[ind_inner]+0.625)* \
r[ind_inner]-(5.0/3.0))*(r[ind_inner]**2)+1.0
# for pts between 1/2 and one localization radius
covLoc[ind_outer] = ((((r[ind_outer]/12. - 0.5) * r[ind_outer] + 0.625) * \
r[ind_outer] + 5.0/3.0) * r[ind_outer] - 5.0) * \
r[ind_outer] + 4.0 - 2.0/(3.0*r[ind_outer])
# Impose zero for pts outside of localization radius
covLoc[ind_out] = 0.0
# prevent negative values: calc. above may produce tiny negative
# values for distances very near the localization radius
# TODO: revisit calculations to minimize round-off errors
covLoc[covLoc < 0.0] = 0.0
return covLoc