-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathlstm_usc(1).py
465 lines (329 loc) · 14.2 KB
/
lstm_usc(1).py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
# coding: utf-8
# In[1]:
import sys
import torch
import torch.nn as nn
import pandas as pd
import os
from torch.utils.data import Dataset, DataLoader
import numpy as np
from torch.utils.data.dataset import Dataset
import torchvision
import torchvision.transforms as transforms
import torch.utils.data as data_utils
import time
import math
import pickle as pkl
import matplotlib.pyplot as plt
import random
from random import shuffle
from collections import namedtuple
from tqdm import tqdm_notebook
from torch.autograd import Variable
from sklearn.metrics import confusion_matrix
# In[2]:
start = time.time()
# In[3]:
device = torch.cuda.device(0) # if torch.cuda.is_available() else 'cpu')
# In[4]:
torch.cuda.current_device()
# In[24]:
sequence_length = 100
input_size = 378
hidden_size = 32
num_layers = 2
num_classes = 2 # Depressed or not depressed
batch_size = 50
num_epochs = 10
learning_rate = 0.01
rec_dropout = 0.05
feature_len = 378
# In[6]:
class RNN(nn.Module):
def __init__(self, input_size, hidden_size, num_layers, num_classes):
super(RNN, self).__init__()
self.hidden_size = hidden_size
self.num_layers = num_layers
self.lstm = nn.LSTM(input_size, hidden_size, num_layers, dropout = rec_dropout, batch_first = True)
# self.lstm = nn.LSTM(input_size, hidden_size, num_layers, batch_first = True)
self.fc = nn.Linear(hidden_size, num_classes)
def forward(self, x):
h0 = torch.randn(self.num_layers, x.size(0), self.hidden_size)
c0 = torch.randn(self.num_layers, x.size(0), self.hidden_size)
out, _ = self.lstm(x, (h0, c0))
out = self.fc(out[:, -1, :])
return out
# In[7]:
class faceFeatures(Dataset):
def __init__(self, root_dir, csv_file, transform=None):
self.features_frame = pd.read_csv(root_dir + csv_file)
self.transform = transform
self.csv_file = csv_file
def __len__(self):
return len(self.features_frame)
def __getitem__(self):
features = np.zeros((sequence_length, feature_len), dtype="float32")
label = np.ones((1), dtype="int32")
all_features = self.features_frame.iloc[:, 3:-1].values
diff = sequence_length - all_features.shape[0]
if (diff < 0):
rows = all_features.shape[0]
row_idx = 0
print (rows)
while(row_idx + sequence_length <= rows):
if (row_idx == 0):
features = all_features[row_idx:row_idx+sequence_length,:]
print ("First matrix shape:" + str(features.shape))
label = self.features_frame.iloc[1, -1]
else:
features = np.vstack((features, all_features[row_idx:row_idx+sequence_length,:]))
label = np.vstack((label, self.features_frame.iloc[1, -1]))
print ("Subsequent matrix shape:" + str(features.shape))
row_idx = row_idx + sequence_length
new_diff = sequence_length - (all_features.shape[0] - row_idx)
print ("Difference is: " + str(new_diff) + str(self.csv_file))
features_zeroes = np.zeros((new_diff, all_features.shape[1]))
second_features = np.append(all_features[row_idx:all_features.shape[0],:], features_zeroes, axis = 0)
features = np.vstack((features, second_features))
print ("Final matrix shape:" + str(features.shape))
label = np.vstack((label, self.features_frame.iloc[1,-1]))
features = features.reshape((-1, sequence_length, feature_len))
else:
features_zeroes = np.zeros((diff, all_features.shape[1]))
features = np.append(all_features, features_zeroes, axis = 0)
print ("Single feature" + str(features.shape))
features = features.reshape(-1, sequence_length, input_size)
# print (self.features_frame.iloc[1, -1])
label = np.array([self.features_frame.iloc[1,-1]])
# print (features, label)
print ("Final shape:" + str(features.shape))
return (features, label)
# In[8]:
class concatFrames(Dataset):
# Initialize the list of csv files
def __init__(self, root_dir, _input, _label, csv_files = []):
self.csv_files = csv_files
self.root_dir = root_dir
self._input = _input
self._label = _label
# Create tensor of frames
def _concat_(self):
data = faceFeatures(self.root_dir, self.csv_files[0])
self._input, self._label = data.__getitem__()
print ("loop outside")
print (self._input.shape)
# self._label = data.__getitem__()[1]
for i in range(1, len(self.csv_files)):
print (self.csv_files[i])
data = faceFeatures(self.root_dir, self.csv_files[i])
_feature_data, _label_data = data.__getitem__()
for j in _feature_data:
print ("loop")
print (j.shape, self._input.shape)
j = j.reshape(-1, sequence_length, input_size)
self._input = self._input.reshape(-1, sequence_length, input_size)
print (j.shape, self._input.shape)
self._input = np.vstack((j, self._input))
for j in _label_data:
self._label = np.vstack((j, self._label))
self._input = self._input.reshape((-1, sequence_length, feature_len))
self._label = self._label.reshape((-1))
print ("Concat :" + str(self._input.shape) + str(self._label.shape))
return (self._input, self._label)
# Get the tensor by index
def __getitem__(self, idx):
frame_name = self.csv_files[idx]
frame_features = self._input[idx]
frame_label = self._label[idx]
return (frame_features, frame_label)
# In[18]:
print ("Training data preprocessing....")
# csv_files = ["300_P_new/300_P1.csv", "302_P_new/302_P2.csv","300_P_new/300_P2.csv"]
csv_files_train = []
for filename in os.listdir("./normalised"):
if filename != "test" and filename != "validation":
for framefile in os.listdir("./normalised/"+filename):
file = filename + "/" + framefile
csv_files_train.append(file)
# print (csv_files_train)
# shuffle(csv_files_train)
print (len(csv_files_train))
_input = np.zeros((sequence_length, feature_len), dtype="float32")
_label = np.ones((1), dtype="int32")
# csv_files_ = ["303_P/303_P25.csv", "303_P/303_P16.csv" ,"303_P/303_P14.csv"]
data = concatFrames(root_dir = "./normalised/", csv_files = csv_files_train, _input = _input, _label = _label)
_input, _label = data._concat_()
_input_train = torch.Tensor(np.array(_input))
_label_train = torch.Tensor(np.array(_label))
_label_train = (_label_train.type(torch.LongTensor))
torch.save(_input_train, "input_train_norm_data_100_378.pt")
torch.save(_label_train, "label_train_norm_data_100_378.pt")
# In[19]:
print ("Validation data preprocessing....")
csv_files_validation = []
for filename in os.listdir("./normalised"):
if filename == "validation":
for framefile in os.listdir("./normalised/"+filename):
file = filename + "/" + framefile
csv_files_validation.append(file)
# print (len(csv_files_validation))
_input_ = np.zeros((sequence_length, feature_len), dtype="float32")
_label_ = np.ones((1), dtype="int32")
data_validation = concatFrames(root_dir = "./normalised/", csv_files = csv_files_validation, _input = _input_, _label = _label_)
_input_validation, _label_validation = data_validation._concat_()
_input_validation = torch.Tensor(np.array(_input_validation))
_label_validation = torch.Tensor(np.array(_label_validation))
_label_validation = (_label_validation.type(torch.LongTensor))
torch.save(_input_validation, "input_validation_norm_data_100_378.pt")
torch.save(_label_validation, "label_validation_norm_data_100_378.pt")
print (_input_validation.shape)
# In[20]:
print ("Test data preprocessing....")
csv_files_test = []
for filename in os.listdir("./normalised"):
if filename == "test":
for framefile in os.listdir("./normalised/"+filename):
file = filename + "/" + framefile
csv_files_test.append(file)
# print (len(csv_files_test))
_input_ = np.zeros((sequence_length, feature_len), dtype="float32")
_label_ = np.ones((1), dtype="int32")
data_test = concatFrames(root_dir = "./normalised/", csv_files = csv_files_test, _input = _input_, _label = _label_)
_input_test, _label_test = data_test._concat_()
_input_test = torch.Tensor(np.array(_input_test))
_label_test = torch.Tensor(np.array(_label_test))
_label_test = (_label_test.type(torch.LongTensor))
torch.save(_input_test, "input_test_norm_data_100_378.pt")
torch.save(_label_test, "label_test_norm_data_100_378.pt")
print (_input_test.shape)
# In[25]:
model = RNN(input_size, hidden_size, num_layers, num_classes)
criterion = nn.CrossEntropyLoss()
# In[18]:
optimizer = torch.optim.SGD(model.parameters(), lr = learning_rate)
# In[19]:
_input_train = torch.load("input_train_new_data_100_378.pt")
_label_train = torch.load("label_train_new_data_100_378.pt")
_input_validation = torch.load("input_validation_new_data_100_378.pt")
_label_validation = torch.load("label_validation_new_data_100_378.pt")
# In[20]:
_input_train = np.array(_input_train)
_label_train = np.array(_label_train)
# In[21]:
# print (_input_validation.shape)
discard_size = _input_train.shape[0] % batch_size
# print (discard_size)
discard_idx = []
for i in range(0, discard_size):
discard_idx.append(random.randint(0, _input_train.shape[0]))
discard_idx = sorted(discard_idx)
discard_idx = list(reversed(discard_idx))
# print (discard_idx)
for i in (discard_idx):
_input_train = np.delete(_input_train, i, 0)
_label_train = np.delete(_label_train, i, 0)
# print (_input_train.shape)
# print (_label_train.shape)
# In[22]:
_input_train = Variable(torch.from_numpy(_input_train))
_label_train = torch.from_numpy(_label_train)
_label_train = Variable(_label_train.type(torch.LongTensor))
train = data_utils.TensorDataset(_input_train, _label_train)
train_loader = data_utils.DataLoader(train, batch_size=batch_size, shuffle=True)
validation = data_utils.TensorDataset(_input_validation, _label_validation)
validation_loader = data_utils.DataLoader(validation, shuffle=True)
total_step = len(train_loader)
epoch_start = time.time()
loss = 0
# In[23]:
valid_acc_cmp = 0
# In[27]:
# batchTuple = namedtuple("batchTuple", "feature label batch_size")
model.train()
for t in tqdm_notebook(range(50)):
n_correct, n_total = 0, 0
train_loss = []
valid_loss = []
train_acc_list = []
valid_acc_list = []
# i is the counter, ith batch, j is the value of batch
# Training
for i,(feature, label) in enumerate(train_loader):
optimizer.zero_grad()
feature = feature.view(-1, sequence_length, input_size)
# print (feature.shape)
label = label.view(batch_size)
# batch = batchTuple(feature = feature, label = label, batch_size = batch_size)
# Forward pass
# outputs is the probabiltites, predicted is the final class, prediction is dony by max
outputs = model(feature)
# outputs and outputs.data is same
# print (outputs.shape)
# print (label.shape)
# Calculate train accuracy
# _ returns the maximum in every row of outputs.data, and predicted_t is the index of max
_, predicted_t = torch.max(outputs.data, 1)
# print ("Training")
# print (predicted_t, label)
# taking the index of the class, converting it to tensor using view, sum, then fetching the result through item
n_correct = n_correct + (torch.max(outputs, 1)[1].view(label.size()) == label).sum().item()
# Labels size (50, 100, 150...)
n_total = n_total + label.size(0)
train_acc = n_correct/n_total
train_acc_list.append(train_acc)
# Calculate loss
loss = criterion(outputs, label)
train_loss.append(loss.item())
# Backward and optimize
loss.backward()
optimizer.step()
print ("Here")
print (t)
for param in model.parameters():
print (param.data, param.data.shape)
# Validation
with torch.no_grad():
correct = 0
total = 0
for j, (images, labels) in enumerate(validation_loader):
images = images.view(-1, sequence_length, input_size)
labels = labels
# outputs is the probabiltites, predicted is the final class
outputs = model(images)
_, predicted = torch.max(outputs.data, 1)
# print ("Validation")
# print (predicted, labels)
total = total + labels.size(0)
correct += (torch.max(outputs, 1)[1].view(labels.size()) == labels).sum().item()
d_loss = criterion(outputs, labels)
valid_loss.append(d_loss)
valid_acc = correct/total
valid_acc_list.append(valid_acc)
print ("Training accuracy, Training loss, Validation loss, Validation Accuracy")
print (t, sum(train_acc_list)/len(train_acc_list), sum(train_loss)/len(train_loss), sum(valid_loss)/len(valid_loss), sum(valid_acc_list)/len(valid_acc_list))
# print ("Epoch time:")
# print (time.time() - epoch_start)
# epoch_start = time.time()
print ("Mean Training Accuracy, Mean Validation Accuracy")
print (sum(train_acc_list)/len(train_acc_list), sum(valid_acc_list)/len(valid_acc_list))
details = "hidden_size:" + str(hidden_size) + ",learning_rate:" + str(learning_rate) + ",dropout:" + str(rec_dropout)
print (details)
plt.figure()
plt.plot(train_loss)
plt.title("Training loss " + str(details))
plt.figure()
plt.plot(train_acc_list)
plt.title("Training accuracy " + str(details))
plt.figure()
plt.plot(valid_loss)
plt.title("Validation loss " + str(details))
plt.figure()
plt.plot(valid_acc_list)
plt.title("Validation accuracy " + str(details))
# plt.figure()
# plt.plot(train_acc_list, label = 'training')
# plt.plot(valid_acc_list, label = 'validation')
# plt.title("Training and Validation accuracy" + str(details))
# In[ ]:
f_time = time.time()-start
print (f_time)