forked from tensorflow/models
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutil.py
164 lines (142 loc) · 6 KB
/
util.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
from __future__ import division
from future import standard_library
standard_library.install_aliases()
from builtins import str
from builtins import range
from past.utils import old_div
# Copyright 2018 The TensorFlow Authors All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
import numpy as np
import tensorflow as tf
import os, random, gc, math, re
import multiprocessing, types, shutil, pickle, json
from collections import defaultdict, MutableMapping
def tanh_sample_info(mu, logsigma, stop_action_gradient=False, n_samples=1):
if n_samples > 1:
mu = tf.expand_dims(mu, 2)
logsigma = tf.expand_dims(logsigma, 2)
sample_shape = tf.concat([tf.shape(mu), n_samples], 0)
else:
sample_shape = tf.shape(mu)
flat_act = mu + tf.random_normal(sample_shape) * tf.exp(logsigma)
if stop_action_gradient: flat_act = tf.stop_gradient(flat_act)
normalized_dist_t = (flat_act - mu) * tf.exp(-logsigma) # ... x D
quadratic = - 0.5 * tf.reduce_sum(normalized_dist_t ** 2, axis=-1) # ... x (None)
log_z = tf.reduce_sum(logsigma, axis=-1) # ... x (None)
D_t = tf.cast(tf.shape(mu)[-1], tf.float32)
log_z += 0.5 * D_t * np.log(2 * np.pi)
flat_ll = quadratic - log_z
scaled_act = tf.tanh(flat_act)
corr = tf.reduce_sum(tf.log(1. - tf.square(scaled_act) + 1e-6), axis=-1)
scaled_ll = flat_ll - corr
return flat_act, flat_ll, scaled_act, scaled_ll
def tf_cheating_contcartpole(state, action):
gravity = 9.8
masscart = 1.0
masspole = 0.1
total_mass = (masspole + masscart)
length = 0.5 # actually half the pole's length
polemass_length = (masspole * length)
force_mag = 10.0
tau = 0.02 # seconds between state updates
# Angle at which to fail the episode
theta_threshold_radians = 12 * 2 * math.pi / 360
x_threshold = 2.4
x, x_dot, theta, theta_dot = tf.split(state, 4, axis=-1)
done = tf.logical_or(x < -x_threshold,
tf.logical_or(x > x_threshold,
tf.logical_or(theta < -theta_threshold_radians,
theta > theta_threshold_radians)))
force = force_mag * action
costheta = tf.cos(theta)
sintheta = tf.sin(theta)
temp = old_div((force + polemass_length * theta_dot * theta_dot * sintheta), total_mass)
thetaacc = old_div((gravity * sintheta - costheta* temp), (length * (old_div(4.0,3.0) - masspole * costheta * costheta / total_mass)))
xacc = temp - polemass_length * thetaacc * costheta / total_mass
x = x + tau * x_dot
x_dot = x_dot + tau * xacc
theta = theta + tau * theta_dot
theta_dot = theta_dot + tau * thetaacc
state = tf.concat([x,x_dot,theta,theta_dot], -1)
done = tf.squeeze(tf.cast(done, tf.float32), -1)
reward = 1.0 - done
done *= 0.
return state, reward, done
def create_directory(dir):
dir_chunks = dir.split("/")
for i in range(len(dir_chunks)):
partial_dir = "/".join(dir_chunks[:i+1])
try:
os.makedirs(partial_dir)
except OSError:
pass
return dir
def create_and_wipe_directory(dir):
shutil.rmtree(create_directory(dir))
create_directory(dir)
def wipe_file(fname):
with open(fname, "w") as f:
f.write("")
return fname
def get_largest_epoch_in_dir(dir, saveid):
reg_matches = [re.findall('\d+_%s'%saveid,filename) for filename in os.listdir(dir)]
epoch_labels = [int(regmatch[0].split("_")[0]) for regmatch in reg_matches if regmatch]
if len(epoch_labels) == 0: return False
return max(epoch_labels)
def wipe_all_but_largest_epoch_in_dir(dir, saveid):
largest = get_largest_epoch_in_dir(dir, saveid)
reg_matches = [(filename, re.findall('\d+_%s'%saveid,filename)) for filename in os.listdir(dir)]
for filename, regmatch in reg_matches:
if regmatch and int(regmatch[0].split("_")[0]) != largest:
os.remove(os.path.join(dir,filename))
class ConfigDict(dict):
def __init__(self, loc=None, ghost=False):
self._dict = defaultdict(lambda :False)
self.ghost = ghost
if loc:
with open(loc) as f: raw = json.load(f)
if "inherits" in raw and raw["inherits"]:
for dep_loc in raw["inherits"]:
self.update(ConfigDict(dep_loc))
if "updates" in raw and raw["updates"]:
self.update(raw["updates"], include_all=True)
def __getitem__(self, key):
return self._dict[key]
def __setitem__(self, key, value):
self._dict[key] = value
def __str__(self):
return str(dict(self._dict))
def __repr__(self):
return str(dict(self._dict))
def __iter__(self):
return self._dict.__iter__()
def __bool__(self):
return bool(self._dict)
def __nonzero__(self):
return bool(self._dict)
def update(self, dictlike, include_all=False):
for key in dictlike:
value = dictlike[key]
if isinstance(value, dict):
if key[0] == "*": # this means only override, do not set
key = key[1:]
ghost = True
else:
ghost = False
if not include_all and isinstance(value, ConfigDict) and key not in self._dict and value.ghost: continue
if key not in self._dict: self._dict[key] = ConfigDict(ghost=ghost)
self._dict[key].update(value)
else:
self._dict[key] = value