forked from SalesforceAIResearch/uni2ts
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy patheval.py
73 lines (67 loc) · 2.77 KB
/
eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
# Copyright (c) 2024, Salesforce, Inc.
# SPDX-License-Identifier: Apache-2
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import hydra
import torch
from gluonts.time_feature import get_seasonality
from hydra.core.hydra_config import HydraConfig
from hydra.utils import call, instantiate
from omegaconf import DictConfig
from torch.utils.tensorboard import SummaryWriter
from uni2ts.common import hydra_util # noqa: hydra resolvers
from uni2ts.eval_util.evaluation import evaluate_model
@hydra.main(version_base="1.3", config_path="conf/eval", config_name="default")
def main(cfg: DictConfig):
test_data, metadata = call(cfg.data)
batch_size = cfg.batch_size
while True:
model = call(cfg.model, _partial_=True, _convert_="all")(
prediction_length=metadata.prediction_length,
target_dim=metadata.target_dim,
feat_dynamic_real_dim=metadata.feat_dynamic_real_dim,
past_feat_dynamic_real_dim=metadata.past_feat_dynamic_real_dim,
)
metrics = instantiate(cfg.metrics, _convert_="all")
try:
predictor = model.create_predictor(batch_size, cfg.device)
res = evaluate_model(
predictor,
test_data=test_data,
metrics=metrics,
batch_size=cfg.batch_size,
axis=None,
mask_invalid_label=True,
allow_nan_forecast=False,
seasonality=get_seasonality(metadata.freq),
)
print(res)
output_dir = HydraConfig.get().runtime.output_dir
writer = SummaryWriter(log_dir=output_dir)
for name, metric in res.to_dict("records")[0].items():
writer.add_scalar(f"{metadata.split}_metrics/{name}", metric)
writer.close()
break
except torch.cuda.OutOfMemoryError:
print(
f"OutOfMemoryError at batch_size {batch_size}, reducing to {batch_size//2}"
)
batch_size //= 2
if batch_size < cfg.min_batch_size:
print(
f"batch_size {batch_size} smaller than "
f"min_batch_size {cfg.min_batch_size}, ending evaluation"
)
break
if __name__ == "__main__":
main()