-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlearn.py
96 lines (79 loc) · 2.9 KB
/
learn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
from keras.preprocessing.image import ImageDataGenerator
from keras.models import Sequential
from keras.layers import Conv2D, MaxPooling2D
from keras.layers import Activation, Dropout, Flatten, Dense
from keras import backend as K
# Could use larger dimensions, but will make training
# times much much longer
img_width, img_height = (128, 72)
train_dir = 'train_data'
test_dir = 'test_data'
num_train_samples = 4000
num_test_samples = 2000
epochs = 20
batch_size = 8
if __name__ == "__main__":
# If data is formatted to have the channels first,
# then stick the RGB channels in front, else put them
# at the end.
if K.image_data_format() == 'channels_first':
input_shape = (3, img_width, img_height)
else:
input_shape = (img_width, img_height, 3)
# This CNN uses three rounds of convolution
# First convolution layer
model = Sequential()
model.add(Conv2D(32, (3, 3), input_shape=input_shape))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
# Second convolution layer
model.add(Conv2D(32, (3, 3)))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
# Third convolution layer
model.add(Conv2D(64, (3, 3)))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
# Convolution is done, so make the fully connected layer
model.add(Flatten())
model.add(Dense(64))
model.add(Activation('relu'))
# Drop 50% of the neurons
model.add(Dropout(0.5))
model.add(Dense(1))
model.add(Activation('sigmoid'))
# It can either be Tide ad or not Tide Ad.
# There's only two choices, so binary cross entropy
# is the loss algorithm of choice
model.compile(loss='binary_crossentropy',
optimizer='rmsprop',
metrics=['accuracy'])
# perform random transformations so that the
# data is more varied
train_datagen = ImageDataGenerator(
rescale=1. / 255,
shear_range=0.2,
zoom_range=0.2,
horizontal_flip=True)
test_datagen = ImageDataGenerator(rescale=1. / 255)
# make extra training data by modifying original training images
train_generator = train_datagen.flow_from_directory(
train_dir,
target_size=(img_width, img_height),
batch_size=batch_size,
class_mode='binary')
# make extra testing data by modifying original test images
validation_generator = test_datagen.flow_from_directory(
test_dir,
target_size=(img_width, img_height),
batch_size=batch_size,
class_mode='binary')
# Train the CNN
model.fit_generator(
train_generator,
steps_per_epoch=num_train_samples // batch_size,
epochs=epochs,
validation_data=validation_generator,
validation_steps=num_test_samples // batch_size)
# Saved CNN model for use with predictions
model.save('saved_model.h5')