forked from EEGKit/EEGwithRaspberryPI
-
Notifications
You must be signed in to change notification settings - Fork 0
/
2.Data_filter.py
56 lines (44 loc) · 1.36 KB
/
2.Data_filter.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
import pandas as pd
import matplotlib.pyplot as plt
from scipy import signal
#1 Read Data
x=0
data = pd.read_csv('data.csv') #or .txt
data=data['ch1 ch2 ch3 ch4 ch5 ch6 ch7 ch8'].str.split(' ', expand=True)
#3 Graph
dataset_y=[]
dataset_x=[]
for a in data[2]:
dataset_y.append(float(a))
x=x+1
dataset_x.append(x)
#2 Filter
#2.1 High Filter
def butter_highpass(cutoff, fs, order=3):
nyq = 0.5 * fs
normal_cutoff = cutoff / nyq
b, a = signal.butter(order, normal_cutoff, btype='high', analog=False)
return b, a
def butter_highpass_filter(data, cutoff, fs, order=5):
b, a = butter_highpass(cutoff_high, fs, order=order)
y = signal.filtfilt(b, a, data)
return y
#2.1 Low Filter
def butter_lowpass(cutoff, fs, order=4):
nyq = 0.5 * fs
normal_cutoff = cutoff / nyq
b, a = signal.butter(order, normal_cutoff, btype='low', analog=False)
return b, a
def butter_lowpass_filter(data, cutoff, fs, order=4):
b, a = butter_lowpass(cutoff, fs, order=order)
y = signal.lfilter(b, a, data)
return y
fps = 250
cutoff_high=1
cutoff_low=40
print (dataset_y)
filtered_sine_high = butter_highpass_filter(dataset_y, cutoff_high, fps)
filtered_sine_low = butter_lowpass_filter(dataset_y, cutoff_low, fps)
filtered_high_pass= butter_lowpass_filter(filtered_sine_high, cutoff_low, fps)
plt.plot(dataset_x,filtered_high_pass)
plt.show()