forked from real-stanford/diffusion_policy
-
Notifications
You must be signed in to change notification settings - Fork 0
/
real_env.py
435 lines (387 loc) · 14.8 KB
/
real_env.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
from typing import Optional
import pathlib
import numpy as np
import time
import shutil
import math
from multiprocessing.managers import SharedMemoryManager
from diffusion_policy.real_world.rtde_interpolation_controller import RTDEInterpolationController
from diffusion_policy.real_world.multi_realsense import MultiRealsense, SingleRealsense
from diffusion_policy.real_world.video_recorder import VideoRecorder
from diffusion_policy.common.timestamp_accumulator import (
TimestampObsAccumulator,
TimestampActionAccumulator,
align_timestamps
)
from diffusion_policy.real_world.multi_camera_visualizer import MultiCameraVisualizer
from diffusion_policy.common.replay_buffer import ReplayBuffer
from diffusion_policy.common.cv2_util import (
get_image_transform, optimal_row_cols)
DEFAULT_OBS_KEY_MAP = {
# robot
'ActualTCPPose': 'robot_eef_pose',
'ActualTCPSpeed': 'robot_eef_pose_vel',
'ActualQ': 'robot_joint',
'ActualQd': 'robot_joint_vel',
# timestamps
'step_idx': 'step_idx',
'timestamp': 'timestamp'
}
class RealEnv:
def __init__(self,
# required params
output_dir,
robot_ip,
# env params
frequency=10,
n_obs_steps=2,
# obs
obs_image_resolution=(640,480),
max_obs_buffer_size=30,
camera_serial_numbers=None,
obs_key_map=DEFAULT_OBS_KEY_MAP,
obs_float32=False,
# action
max_pos_speed=0.25,
max_rot_speed=0.6,
# robot
tcp_offset=0.13,
init_joints=False,
# video capture params
video_capture_fps=30,
video_capture_resolution=(1280,720),
# saving params
record_raw_video=True,
thread_per_video=2,
video_crf=21,
# vis params
enable_multi_cam_vis=True,
multi_cam_vis_resolution=(1280,720),
# shared memory
shm_manager=None
):
assert frequency <= video_capture_fps
output_dir = pathlib.Path(output_dir)
assert output_dir.parent.is_dir()
video_dir = output_dir.joinpath('videos')
video_dir.mkdir(parents=True, exist_ok=True)
zarr_path = str(output_dir.joinpath('replay_buffer.zarr').absolute())
replay_buffer = ReplayBuffer.create_from_path(
zarr_path=zarr_path, mode='a')
if shm_manager is None:
shm_manager = SharedMemoryManager()
shm_manager.start()
if camera_serial_numbers is None:
camera_serial_numbers = SingleRealsense.get_connected_devices_serial()
color_tf = get_image_transform(
input_res=video_capture_resolution,
output_res=obs_image_resolution,
# obs output rgb
bgr_to_rgb=True)
color_transform = color_tf
if obs_float32:
color_transform = lambda x: color_tf(x).astype(np.float32) / 255
def transform(data):
data['color'] = color_transform(data['color'])
return data
rw, rh, col, row = optimal_row_cols(
n_cameras=len(camera_serial_numbers),
in_wh_ratio=obs_image_resolution[0]/obs_image_resolution[1],
max_resolution=multi_cam_vis_resolution
)
vis_color_transform = get_image_transform(
input_res=video_capture_resolution,
output_res=(rw,rh),
bgr_to_rgb=False
)
def vis_transform(data):
data['color'] = vis_color_transform(data['color'])
return data
recording_transfrom = None
recording_fps = video_capture_fps
recording_pix_fmt = 'bgr24'
if not record_raw_video:
recording_transfrom = transform
recording_fps = frequency
recording_pix_fmt = 'rgb24'
video_recorder = VideoRecorder.create_h264(
fps=recording_fps,
codec='h264',
input_pix_fmt=recording_pix_fmt,
crf=video_crf,
thread_type='FRAME',
thread_count=thread_per_video)
realsense = MultiRealsense(
serial_numbers=camera_serial_numbers,
shm_manager=shm_manager,
resolution=video_capture_resolution,
capture_fps=video_capture_fps,
put_fps=video_capture_fps,
# send every frame immediately after arrival
# ignores put_fps
put_downsample=False,
record_fps=recording_fps,
enable_color=True,
enable_depth=False,
enable_infrared=False,
get_max_k=max_obs_buffer_size,
transform=transform,
vis_transform=vis_transform,
recording_transform=recording_transfrom,
video_recorder=video_recorder,
verbose=False
)
multi_cam_vis = None
if enable_multi_cam_vis:
multi_cam_vis = MultiCameraVisualizer(
realsense=realsense,
row=row,
col=col,
rgb_to_bgr=False
)
cube_diag = np.linalg.norm([1,1,1])
j_init = np.array([0,-90,-90,-90,90,0]) / 180 * np.pi
if not init_joints:
j_init = None
robot = RTDEInterpolationController(
shm_manager=shm_manager,
robot_ip=robot_ip,
frequency=125, # UR5 CB3 RTDE
lookahead_time=0.1,
gain=300,
max_pos_speed=max_pos_speed*cube_diag,
max_rot_speed=max_rot_speed*cube_diag,
launch_timeout=3,
tcp_offset_pose=[0,0,tcp_offset,0,0,0],
payload_mass=None,
payload_cog=None,
joints_init=j_init,
joints_init_speed=1.05,
soft_real_time=False,
verbose=False,
receive_keys=None,
get_max_k=max_obs_buffer_size
)
self.realsense = realsense
self.robot = robot
self.multi_cam_vis = multi_cam_vis
self.video_capture_fps = video_capture_fps
self.frequency = frequency
self.n_obs_steps = n_obs_steps
self.max_obs_buffer_size = max_obs_buffer_size
self.max_pos_speed = max_pos_speed
self.max_rot_speed = max_rot_speed
self.obs_key_map = obs_key_map
# recording
self.output_dir = output_dir
self.video_dir = video_dir
self.replay_buffer = replay_buffer
# temp memory buffers
self.last_realsense_data = None
# recording buffers
self.obs_accumulator = None
self.action_accumulator = None
self.stage_accumulator = None
self.start_time = None
# ======== start-stop API =============
@property
def is_ready(self):
return self.realsense.is_ready and self.robot.is_ready
def start(self, wait=True):
self.realsense.start(wait=False)
self.robot.start(wait=False)
if self.multi_cam_vis is not None:
self.multi_cam_vis.start(wait=False)
if wait:
self.start_wait()
def stop(self, wait=True):
self.end_episode()
if self.multi_cam_vis is not None:
self.multi_cam_vis.stop(wait=False)
self.robot.stop(wait=False)
self.realsense.stop(wait=False)
if wait:
self.stop_wait()
def start_wait(self):
self.realsense.start_wait()
self.robot.start_wait()
if self.multi_cam_vis is not None:
self.multi_cam_vis.start_wait()
def stop_wait(self):
self.robot.stop_wait()
self.realsense.stop_wait()
if self.multi_cam_vis is not None:
self.multi_cam_vis.stop_wait()
# ========= context manager ===========
def __enter__(self):
self.start()
return self
def __exit__(self, exc_type, exc_val, exc_tb):
self.stop()
# ========= async env API ===========
def get_obs(self) -> dict:
"observation dict"
assert self.is_ready
# get data
# 30 Hz, camera_receive_timestamp
k = math.ceil(self.n_obs_steps * (self.video_capture_fps / self.frequency))
self.last_realsense_data = self.realsense.get(
k=k,
out=self.last_realsense_data)
# 125 hz, robot_receive_timestamp
last_robot_data = self.robot.get_all_state()
# both have more than n_obs_steps data
# align camera obs timestamps
dt = 1 / self.frequency
last_timestamp = np.max([x['timestamp'][-1] for x in self.last_realsense_data.values()])
obs_align_timestamps = last_timestamp - (np.arange(self.n_obs_steps)[::-1] * dt)
camera_obs = dict()
for camera_idx, value in self.last_realsense_data.items():
this_timestamps = value['timestamp']
this_idxs = list()
for t in obs_align_timestamps:
is_before_idxs = np.nonzero(this_timestamps < t)[0]
this_idx = 0
if len(is_before_idxs) > 0:
this_idx = is_before_idxs[-1]
this_idxs.append(this_idx)
# remap key
camera_obs[f'camera_{camera_idx}'] = value['color'][this_idxs]
# align robot obs
robot_timestamps = last_robot_data['robot_receive_timestamp']
this_timestamps = robot_timestamps
this_idxs = list()
for t in obs_align_timestamps:
is_before_idxs = np.nonzero(this_timestamps < t)[0]
this_idx = 0
if len(is_before_idxs) > 0:
this_idx = is_before_idxs[-1]
this_idxs.append(this_idx)
robot_obs_raw = dict()
for k, v in last_robot_data.items():
if k in self.obs_key_map:
robot_obs_raw[self.obs_key_map[k]] = v
robot_obs = dict()
for k, v in robot_obs_raw.items():
robot_obs[k] = v[this_idxs]
# accumulate obs
if self.obs_accumulator is not None:
self.obs_accumulator.put(
robot_obs_raw,
robot_timestamps
)
# return obs
obs_data = dict(camera_obs)
obs_data.update(robot_obs)
obs_data['timestamp'] = obs_align_timestamps
return obs_data
def exec_actions(self,
actions: np.ndarray,
timestamps: np.ndarray,
stages: Optional[np.ndarray]=None):
assert self.is_ready
if not isinstance(actions, np.ndarray):
actions = np.array(actions)
if not isinstance(timestamps, np.ndarray):
timestamps = np.array(timestamps)
if stages is None:
stages = np.zeros_like(timestamps, dtype=np.int64)
elif not isinstance(stages, np.ndarray):
stages = np.array(stages, dtype=np.int64)
# convert action to pose
receive_time = time.time()
is_new = timestamps > receive_time
new_actions = actions[is_new]
new_timestamps = timestamps[is_new]
new_stages = stages[is_new]
# schedule waypoints
for i in range(len(new_actions)):
self.robot.schedule_waypoint(
pose=new_actions[i],
target_time=new_timestamps[i]
)
# record actions
if self.action_accumulator is not None:
self.action_accumulator.put(
new_actions,
new_timestamps
)
if self.stage_accumulator is not None:
self.stage_accumulator.put(
new_stages,
new_timestamps
)
def get_robot_state(self):
return self.robot.get_state()
# recording API
def start_episode(self, start_time=None):
"Start recording and return first obs"
if start_time is None:
start_time = time.time()
self.start_time = start_time
assert self.is_ready
# prepare recording stuff
episode_id = self.replay_buffer.n_episodes
this_video_dir = self.video_dir.joinpath(str(episode_id))
this_video_dir.mkdir(parents=True, exist_ok=True)
n_cameras = self.realsense.n_cameras
video_paths = list()
for i in range(n_cameras):
video_paths.append(
str(this_video_dir.joinpath(f'{i}.mp4').absolute()))
# start recording on realsense
self.realsense.restart_put(start_time=start_time)
self.realsense.start_recording(video_path=video_paths, start_time=start_time)
# create accumulators
self.obs_accumulator = TimestampObsAccumulator(
start_time=start_time,
dt=1/self.frequency
)
self.action_accumulator = TimestampActionAccumulator(
start_time=start_time,
dt=1/self.frequency
)
self.stage_accumulator = TimestampActionAccumulator(
start_time=start_time,
dt=1/self.frequency
)
print(f'Episode {episode_id} started!')
def end_episode(self):
"Stop recording"
assert self.is_ready
# stop video recorder
self.realsense.stop_recording()
if self.obs_accumulator is not None:
# recording
assert self.action_accumulator is not None
assert self.stage_accumulator is not None
# Since the only way to accumulate obs and action is by calling
# get_obs and exec_actions, which will be in the same thread.
# We don't need to worry new data come in here.
obs_data = self.obs_accumulator.data
obs_timestamps = self.obs_accumulator.timestamps
actions = self.action_accumulator.actions
action_timestamps = self.action_accumulator.timestamps
stages = self.stage_accumulator.actions
n_steps = min(len(obs_timestamps), len(action_timestamps))
if n_steps > 0:
episode = dict()
episode['timestamp'] = obs_timestamps[:n_steps]
episode['action'] = actions[:n_steps]
episode['stage'] = stages[:n_steps]
for key, value in obs_data.items():
episode[key] = value[:n_steps]
self.replay_buffer.add_episode(episode, compressors='disk')
episode_id = self.replay_buffer.n_episodes - 1
print(f'Episode {episode_id} saved!')
self.obs_accumulator = None
self.action_accumulator = None
self.stage_accumulator = None
def drop_episode(self):
self.end_episode()
self.replay_buffer.drop_episode()
episode_id = self.replay_buffer.n_episodes
this_video_dir = self.video_dir.joinpath(str(episode_id))
if this_video_dir.exists():
shutil.rmtree(str(this_video_dir))
print(f'Episode {episode_id} dropped!')