-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathwrite_conf_info.py
31 lines (28 loc) · 2.03 KB
/
write_conf_info.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
import csv
headers = ['name','parent','type','hold_time','database']
rows = [
{'name':'arxiv','parent':'arxiv','type':'conf','hold_time':'always','database':'dblp'},
{'name':'aaai','parent':'aaai','type':'conf','hold_time':'always','database':'dblp'},
{'name':'cvpr','parent':'cvpr','type':'conf','hold_time':'always','database':'dblp'},
{'name':'iccv','parent':'iccv','type':'conf','hold_time':'single','database':'dblp'},
{'name':'eccv','parent':'eccv','type':'conf','hold_time':'double','database':'dblp'},
{'name':'ijcai','parent':'ijcai','type':'conf','hold_time':'always','database':'dblp'},
{'name':'icml','parent':'icml','type':'conf','hold_time':'always','database':'dblp'},
{'name':'iclr','parent':'iclr','type':'conf','hold_time':'always','database':'dblp'},
{'name':'nips','parent':'nips','type':'conf','hold_time':'always','database':'dblp'},
{'name':'icme','parent':'icmcs','type':'conf','hold_time':'always','database':'dblp'},
{'name':'mm','parent':'mm','type':'conf','hold_time':'always','database':'dblp'},
{'name':'mmi','parent':'mmi','type':'journal','hold_time':'always','database':'dblp'},
{'name':'alt','parent':'alt','type':'conf','hold_time':'always','database':'dblp'},
{'name':'tmi','parent':'tmi','type':'journals','hold_time':'always','database':'dblp'},
{'name':'miccai','parent':'miccai','type':'conf','hold_time':'always','database':'dblp'},
{'name':'jama','parent':'jama','type':'journals','hold_time':'always','database':'medhub'},
{'name':'nbe','parent':'Nat Biomed Eng','type':'journals','hold_time':'always','database':'medhub'},
{'name':'nm','parent':'Nat Methods','type':'journals','hold_time':'always','database':'medhub'},
{'name':'nm','parent':'Nat Mach Intell','type':'journals','hold_time':'always','database':'medhub'},
]
with open('conf_info.csv','w')as f:
writer = csv.DictWriter(f, headers)
writer.writeheader()
for row in rows:
writer.writerow(row)