Skip to content

Latest commit

 

History

History
57 lines (41 loc) · 1.82 KB

README.md

File metadata and controls

57 lines (41 loc) · 1.82 KB

Music Genre Classifier

This project involves building a deep learning model to classify music genres from audio clips using TensorFlow and Keras. The classifier uses mel spectrograms as input features.

Requirements

  • TensorFlow
  • Keras
  • numpy
  • scipy
  • matplotlib
  • pydub

Setup

  1. Dataset: Ensure your dataset is organized in directories by genre under ../DATASET/sesler/Data/genres_original/.

  2. Preprocessing:

    • load_wav_16k_mono(filename): Loads a WAV file as mono 16kHz.
    • audio_to_melspectogram(wav, sr=16000, n_mels=128, n_fft=2048, hop_length=512): Converts audio to mel spectrogram.
  3. Data Preparation:

    • Load and preprocess audio files from the dataset.
    • Concatenate and prepare datasets for training.
  4. Model Training:

    • Define and train a Convolutional Neural Network (CNN) model using TensorFlow and Keras.
    • Model architecture:
      • Input layer: (28, 128, 1)
      • Convolutional layers with MaxPooling
      • Dense layers with dropout
      • Output layer with softmax activation (11 classes)
    • Optimizer: Adam with custom parameters.
    • Loss function: Categorical Crossentropy.
  5. Model Evaluation:

    • Evaluate the model on test data.
    • Plot training history using matplotlib.
    • alt text
  6. Save Model:

    • Save the trained model as Music_Classifier.h5.
  7. Audio Prediction:

    • Use split_audio(file_path) to split an MP3 file into chunks.
    • Preprocess chunks into mel spectrograms for prediction.
    • Load the saved model and predict genres for each chunk.

Usage

  • Ensure dependencies are installed (pip install -r requirements.txt).
  • Run scripts sequentially for dataset preparation, model training, and audio prediction.