-
Notifications
You must be signed in to change notification settings - Fork 7
/
main_pretrain.py
334 lines (272 loc) · 14.2 KB
/
main_pretrain.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
# --------------------------------------------------------
# References:
# DeiT: https://github.com/facebookresearch/deit
# BEiT: https://github.com/microsoft/unilm/tree/master/beit
# MAE: https://github.com/facebookresearch/mae
# UM-MAE: https://github.com/implus/UM-MAE
# --------------------------------------------------------
import argparse
import datetime
import json
import numpy as np
import os
import time
from pathlib import Path
import builtins
import torch
import torch.backends.cudnn as cudnn
from torch.utils.tensorboard import SummaryWriter
import timm
assert timm.__version__ == "0.3.2"
import timm.optim.optim_factory as optim_factory
from timm.utils import ModelEma
from util import utils
import util.misc as misc
from util.misc import NativeScalerWithGradNormCount as NativeScaler
from util.datasets import ImageListFolder
from engine_pretrain import train_one_epoch
from mask_transform import MaskTransform
import models_mae
import models_mae_learn_loss
import models_mae_learn_feature_loss
def get_args_parser():
parser = argparse.ArgumentParser('Hard Patches Mining for Masked Image Modeling', add_help=False)
parser.add_argument('--batch_size', default=64, type=int,
help='Batch size per GPU (effective batch size is batch_size * accum_iter * # gpus')
parser.add_argument('--epochs', default=400, type=int)
parser.add_argument('--accum_iter', default=1, type=int,
help='Accumulate gradient iterations (for increasing the effective batch size under memory constraints)')
parser.add_argument('--bf16', action='store_true', help='whether to use bf16')
# Model parameters
parser.add_argument('--model', default='mae_vit_large_patch16', type=str, metavar='MODEL',
help='Name of model to train')
parser.add_argument('--input_size', default=224, type=int, help='images input size')
parser.add_argument('--token_size', default=int(224 / 16), type=int,
help='number of patch (in one dimension), usually input_size//16') # for mask generator
parser.add_argument('--norm_pix_loss', action='store_true',
help='Use (per-patch) normalized pixels as targets for computing loss')
parser.set_defaults(norm_pix_loss=False)
parser.add_argument('--finetune', default='',
help='finetune from checkpoint')
# Mask parameters (by UM-MAE)
parser.add_argument('--mask_ratio', default=0.75, type=float,
help='Masking ratio (percentage of removed patches).')
parser.add_argument('--mask_regular', action='store_true',
help='Uniform sampling for supporting pyramid-based vits')
parser.set_defaults(mask_regular=False)
parser.add_argument('--mask_block', action='store_true',
help='Block sampling for supporting pyramid-based vits')
parser.set_defaults(mask_block=False)
parser.add_argument('--vis_mask_ratio', default=0.0, type=float,
help='Secondary masking ratio (mask percentage of visible patches, secondary masking phase).')
# HPM parameters
parser.add_argument('--learning_loss', action='store_true', help='Learn to predict loss for each patch.')
parser.set_defaults(learning_loss=True)
parser.add_argument('--learn_feature_loss', default='none', type=str,
help='Use MSE loss for features as target.')
parser.add_argument('--relative', action='store_true', help='Use relative learning loss or not.')
parser.set_defaults(relative=True)
parser.add_argument('--dino_path', default='none', type=str,
help='Pre-trained DINO for feature distillation (ViT-B/16).')
parser.add_argument('--clip_path', default='none', type=str,
help='Pre-trained CLIP for feature distillation (ViT-B/16).')
# Optimizer parameters
parser.add_argument('--weight_decay', type=float, default=0.05,
help='weight decay (default: 0.05)')
parser.add_argument('--lr', type=float, default=None, metavar='LR',
help='learning rate (absolute lr)')
parser.add_argument('--blr', type=float, default=1e-3, metavar='LR',
help='base learning rate: absolute_lr = base_lr * total_batch_size / 256')
parser.add_argument('--min_lr', type=float, default=0., metavar='LR',
help='lower lr bound for cyclic schedulers that hit 0')
parser.add_argument('--warmup_epochs', type=int, default=40, metavar='N',
help='epochs to warmup LR, 40 for MAE and 10 for SimMIM')
# Dataset parameters
parser.add_argument('--data_path', default='/path/to/imagenet/', type=str,
help='dataset path')
parser.add_argument('--output_dir', default='./output_dir', help='path where to save, empty for no saving')
parser.add_argument('--log_dir', default='./output_dir', help='path where to tensorboard log')
parser.add_argument('--device', default='cuda', help='device to use for training / testing')
parser.add_argument('--seed', default=0, type=int)
parser.add_argument('--resume', default='', help='resume from checkpoint')
parser.add_argument('--load_from', default='', help='load pretrained checkpoint model')
parser.add_argument('--experiment', default='exp', type=str, help='experiment name (for log)')
parser.add_argument('--start_epoch', default=0, type=int, metavar='N', help='start epoch')
parser.add_argument('--num_workers', default=8, type=int)
parser.add_argument('--pin_mem', action='store_true',
help='Pin CPU memory in DataLoader for more efficient (sometimes) transfer to GPU.')
parser.add_argument('--no_pin_mem', action='store_false', dest='pin_mem')
parser.set_defaults(pin_mem=True)
# distributed training parameters
parser.add_argument('--world_size', default=1, type=int, help='number of distributed processes')
parser.add_argument('--local_rank', default=-1, type=int)
parser.add_argument('--dist_on_itp', action='store_true')
parser.add_argument('--dist_url', default='env://', help='url used to set up distributed training')
return parser
def main(args):
misc.init_distributed_mode(args)
print('job dir: {}'.format(os.path.dirname(os.path.realpath(__file__))))
print("{}".format(args).replace(', ', ',\n'))
device = torch.device(args.device)
# fix the seed for reproducibility
seed = args.seed + misc.get_rank()
torch.manual_seed(seed)
np.random.seed(seed)
cudnn.benchmark = True
# simple augmentation
transform_train = MaskTransform(args)
# build dataset
dataset_train = ImageListFolder(os.path.join(args.data_path, 'train'), transform=transform_train,
ann_file=os.path.join(args.data_path, 'train.txt'))
print(dataset_train)
num_tasks = misc.get_world_size()
global_rank = misc.get_rank()
sampler_train = torch.utils.data.DistributedSampler(
dataset_train, num_replicas=num_tasks, rank=global_rank, shuffle=True
)
print("Sampler_train = %s" % str(sampler_train))
data_loader_train = torch.utils.data.DataLoader(
dataset_train, sampler=sampler_train,
batch_size=args.batch_size,
num_workers=args.num_workers,
pin_memory=args.pin_mem,
drop_last=True,
)
if global_rank == 0 and args.log_dir is not None:
log_dir = os.path.join(args.log_dir, f"{args.model}_{args.experiment}")
os.makedirs(log_dir, exist_ok=True)
log_writer = SummaryWriter(log_dir=log_dir)
else:
log_writer = None
model_teacher = None
# define the model
if args.learning_loss:
if args.learn_feature_loss != 'none':
assert args.learn_feature_loss in ['clip', 'dino', 'ema']
model = models_mae_learn_feature_loss.__dict__[args.model](norm_pix_loss=args.norm_pix_loss,
vis_mask_ratio=args.vis_mask_ratio)
if args.learn_feature_loss == 'dino':
model_teacher = timm.models.vit_base_patch16_224()
model_teacher.load_state_dict(torch.load(args.dino_path), strict=False)
else:
from models_clip import build_model
state_dict = torch.load(args.clip_path, map_location='cpu')
model_clip = build_model(state_dict)
model_clip.load_state_dict(state_dict, strict=False)
model_clip.float()
model_teacher = model_clip.visual
model_teacher.to(device)
model_teacher.eval()
else:
model = models_mae_learn_loss.__dict__[args.model](norm_pix_loss=args.norm_pix_loss,
vis_mask_ratio=args.vis_mask_ratio)
else:
if args.learn_feature_loss != 'none':
assert args.learn_feature_loss in ['clip', 'dino', 'ema']
model = models_mae_learn_feature_loss.__dict__[args.model](norm_pix_loss=args.norm_pix_loss,
vis_mask_ratio=args.vis_mask_ratio,
learning_loss=False)
if args.learn_feature_loss == 'dino':
model_teacher = timm.models.vit_base_patch16_224()
model_teacher.load_state_dict(torch.load(args.dino_path), strict=False)
else:
from models_clip import build_model
state_dict = torch.load(args.clip_path, map_location='cpu')
model_clip = build_model(state_dict)
model_clip.load_state_dict(state_dict, strict=False)
model_clip.float()
model_teacher = model_clip.visual
model_teacher.to(device)
model_teacher.eval()
else:
model = models_mae.__dict__[args.model](norm_pix_loss=args.norm_pix_loss,
vis_mask_ratio=args.vis_mask_ratio)
model.to(device)
model_without_ddp = model
print("Model = %s" % str(model_without_ddp))
# define ema model
model_ema = None
if args.byol or args.learning_loss or args.learn_feature_loss == 'ema':
# use momentum encoder for BYOL
model_ema = ModelEma(model, decay=0.999, device=args.device, resume='')
eff_batch_size = args.batch_size * args.accum_iter * misc.get_world_size()
if args.lr is None: # only base_lr is specified
args.lr = args.blr * eff_batch_size / 256
print("base lr: %.2e" % (args.lr * 256 / eff_batch_size))
print("actual lr: %.2e" % args.lr)
print("accumulate grad iterations: %d" % args.accum_iter)
print("effective batch size: %d" % eff_batch_size)
if args.distributed:
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu], find_unused_parameters=False)
model_without_ddp = model.module
# following timm: set wd as 0 for bias and norm layers
param_groups = optim_factory.add_weight_decay(model_without_ddp, args.weight_decay)
optimizer = torch.optim.AdamW(param_groups, lr=args.lr, betas=(0.9, 0.95))
print(optimizer)
loss_scaler = NativeScaler()
ckpt_path = os.path.join(args.output_dir, f"{args.model}_{args.experiment}_temp.pth")
if not os.path.isfile(ckpt_path):
print("Checkpoint not founded in {}, train from random initialization".format(ckpt_path))
else:
print("Found checkpoint at {}".format(ckpt_path))
misc.load_model(args=args, ckpt_path=ckpt_path, model_without_ddp=model, optimizer=optimizer,
loss_scaler=loss_scaler, model_ema=model_ema.ema)
print(f"Start training for {args.epochs} epochs")
start_time = time.time()
for epoch in range(args.start_epoch, args.epochs):
data_loader_train.sampler.set_epoch(epoch)
train_stats = train_one_epoch(
model, data_loader_train,
optimizer, device, epoch, loss_scaler,
log_writer=log_writer,
args=args,
model_ema=model_ema,
model_teacher=model_teacher,
)
save_dict = {
"epoch": epoch + 1,
"state_dict": model.state_dict(),
# "ema_state_dict": model_ema.ema.state_dict(),
"optimizer": optimizer.state_dict(),
"model": args.model,
}
if model_ema is not None:
save_dict['ema_state_dict'] = model_ema.ema.state_dict()
if loss_scaler is not None:
save_dict['loss_scaler'] = loss_scaler.state_dict()
ckpt_path = os.path.join(args.output_dir, f"{args.model}_{args.experiment}_temp.pth")
utils.save_on_master(save_dict, ckpt_path)
print(f"model_path: {ckpt_path}")
if args.output_dir and ((epoch + 1) % 100 == 0 or epoch + 1 == args.epochs):
ckpt_path = os.path.join(args.output_dir,
"{}_{}_{:04d}.pth".format(args.model, args.experiment,
epoch))
utils.save_on_master(save_dict, ckpt_path)
log_stats = {**{f'train_{k}': v for k, v in train_stats.items()},
'epoch': epoch}
if args.output_dir and misc.is_main_process():
if log_writer is not None:
log_writer.flush()
with open(os.path.join(
args.output_dir,
"{}_{}_log.txt".format(
args.model,
args.experiment
)
), mode="a", encoding="utf-8") as f:
f.write(json.dumps(log_stats) + "\n")
total_time = time.time() - start_time
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
print('Training time {}'.format(total_time_str))
if __name__ == '__main__':
if not misc.is_main_process():
def print_pass(*args):
pass
builtins.print = print_pass
args = get_args_parser()
args = args.parse_args()
if args.output_dir:
Path(args.output_dir).mkdir(parents=True, exist_ok=True)
main(args)