A typical command to fine-tune ViT-B/16 with single-node distributed training, run the following on 1 node with 8 GPUs each:
python -m torch.distributed.launch --nproc_per_node=8 --nnodes 1 --node_rank 0 \
main_finetune.py \
--batch_size 48 \
--accum_iter 1 \
--model vit_base_patch16 \
--finetune /path/to/checkpoint/ \
--epochs 100 \
--warmup_epochs 5 \
--blr 5e-4 --layer_decay 0.8 --weight_decay 0.05 \
--drop_path 0.1 --reprob 0.25 --mixup 0.8 --cutmix 1.0 \
--dist_eval \
--data_path /path/to/ImageNet/ \
--dataloader_type nori --nb_classes 1000 \
--output_dir ./output_dir/finetune \
--log_dir ./log_dir/finetune \
--experiment hpm_in1k_ep100
Please modify /path/to/ImageNet/
to your ```<data_path>````.
You can also move the txt files IN1K/train.txt and IN1K/val.txt to your imagenet root path.
Please find these files here.
More scripts can be found in scripts.